1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Progress of proximity labeling technology in membrane protein interaction
Xin PEI ; Guideng LI ; Weihua CHU
Journal of China Pharmaceutical University 2024;55(2):158-166
Abstract: Membrane proteins, which play a critical role in various life processes, particularly in regulating cell-cell contact and signal transduction, are closely linked to cell differentiation and maturation. Therefore, it is of great theoretical and practical significance to develop a variety of methods to thoroughly explore the interactions between membrane proteins. In addition to traditional techniques such as immunoprecipitation, newly developed proximity labeling (PL) techniques have gradually become important means to study membrane protein interaction. PL methods are based on engineered enzymes fused with bait protein to catalyze small molecules, label neighboring target proteins, and detect the interactions by flow cytometry, mass spectrometry, confocal microscopic imaging, etc. This paper focuses on the recent developments in PL techniques for studying membrane protein interactions, with a prospect of the potential future directions for research in this area.
6.Chemical constituents from the leaves of Cyclocarya paliurus and their α-glucosidase inhibitory activities
Yong YANG ; Ting-Si GUO ; Min XIE ; Li-Hong TAN ; Wen-Chu LI ; Hao ZHENG ; Fei-Bing HUANG ; Yu-Pei YANG ; Wei WANG ; Yu-Qing JIAN
Chinese Traditional Patent Medicine 2024;46(3):834-842
AIM To study the chemical constituents from the leaves of Cyanocarya paliurus(Batalin)Iljinskaja and their α-glucosidase inhibitory activities.METHODS The 95%ethanol extract from the leaves of C.paliurus was isolated and purified by macroporous resin,silica gel,Sephadex LH-20,polyamide,C18 reversed-phase silica gel and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their α-glucosidase inhibitory activities were evaluated by PNPG.RESULTS Fifteen compounds were isolated and identified as cyclopaloside C(1),cyclopaloside A(2),juglanosides E(3),vaccinin A(4),ent-murin A(5),kaempferol 3-O-α-L-rhamnopyranoside(6),kaempferol-3-O-β-D-glucopyranoside(7),kaempferol-3-O-β-D-glucuronide methyl ester(8),kaempferol-3-O-β-D-glucuronide ethyl ester(9),kaempferol-3-O-β-D-glucuronide butyl ester(10),quercetin-3-O-α-L-rhamnopyranoside(11)quercetin-3-O-β-D-glucopyranoside(12),quercetin-3-O-β-D-galactopyranoside(13),quercetin-3-O-β-D-glucuronide butyl ester(14),dihydrokaempferol(15).The IC50 value of total extracts ihibited α-glucosidase was(1.83±0.04)μg/mL,and the IC50 values of compounds 1,4-5 were(29.48±1.86),(0.50±0.07),(0.71±0.07)μmol/L,respectively.CONCLUSION Compound 1 is a new tetrahydronaphthalene glycoside.Compounds 4-5,8-10 and 14 are isolated from the leaves of C.paliurus for the first time.Compounds 4-5 are relatively rare flavonoid lignans with potential inhibitory activities against α-glucosidase.
7.Epidemiological investigation of an incident of suspected intentional transmission of AIDS
CHU Kun ; SHI Xiaojun ; JIANG Haibo ; PEI Xueli ; TAN Shiwen ; SHI Hongbo ; YE Zehao ; YANG Jianhui ; ZHANG Dandan
Journal of Preventive Medicine 2024;36(3):232-234
Abstract
On 18 May 2021, the Center for Disease Control and Prevention (CDC) of X District in P City, Z Province received a co-investigation of a suspected case of intentional HIV transmission from the public security branch, and conducted epidemiological investigations on Zhao and Wang (both males). Wang was confirmed HIV-positive in 2019. Zhao had unprotected sexual encounters several times with Wang in March 2021 without being informed of Wang's HIV infection. Zhao developed fever, sore throat and other symptoms of acute infection phase on 28 March, and were confirmed HIV positive by the CDC of P City on 11 May. Zhao did not have sex with anyone else before or after having sex with Wang. In addition, Zhao had no history of surgery, blood transfusions, drug use or any other history of HIV exposure. Laboratory tests conducted by the CDC of Z Province showed that the HIV nucleic acid sequences between the samples of Zhao and Wang had a high degree of homology. Combined with the epidemiological investigation, laboratory testing and the evidence from the public security branch, it was concluded that Wang intentionally transmitted HIV to Zhao through unprotected anal sex without disclosing his HIV infection status.
8.Neuro-ophthalmic features of SARS-CoV-2 associated acute macular neuroretinopathy
Pei LIU ; Zhaojie CHU ; Bo LI ; Xuemei LIN ; Yan LIU ; Chensheng SONG ; Yan SUO ; Jun ZHAO ; Songdi WU
International Eye Science 2024;24(7):1173-1178
AIM: To explore the neuro-ophthalmological characteristics of acute macular neuroretinopathy(AMN)after SARS-CoV-2 infection.METHODS: A total of 8 patients(14 eyes), including 6 females and 2 males, who were diagnosed with AMN in the neuro-ophthalmology department of Xi'an No.1 Hospital(The First Affiliated Hospital of Northwest University)from December 27, 2022 to February 1, 2023 were included in the study. All patients had a history of SARS-CoV-2 infection before the disease, and the results of best corrected visual acuity(BCVA), non-contact indirect intraocular pressure measurement, fundus color photography, near infrared(IR), spectral-domain optical coherence tomography(SD-OCT), OCT angiography(OCTA), fundus fluorescein angiography(FFA), indocyanine green angiography(ICGA), visual field, visual evoked potential(VEP), and electroretinogram(ERG)were collected. Furthermore, the neuro-opthalmology characteristics of the included patients were analyzed and summarized.RESULTS: The included 8 patients aged from 20 to 43, with an average age of(30±6.63)years old. The patients had a history of SARS-CoV-2 infection 3 to 11(mean 5±3.51)d before the disease, and 6 out of 8 patients developed visual symptoms within 5 d of infection with SARS-CoV-2, with manifestated with decreased vision or visual scotoma. The visual acuity varied from 0.08 to 1.0, with visual field defect characterized by central, paracentral or peripheral scotoma. VEP showed prolongation latency of P100 or P2, and ERG revealed impaired function of retinal photoreceptor cell. In the early stage of the disease, the size and shape of early visual acuity, visual field, and extraretinal lesions in patients with AMN associated with SARS-CoV-2 infection may not match, and the lower the visual acuity, the later the VEP peaks.CONCLUSION: The neuro-ophthalmic features of SARS-CoV-2 infection-associated AMN require the attention of clinicians. In addition to multi-mode fundus imaging, clinicians should use a variety of methods to comprehensively evaluate visual function and prognosis of patients.
9.Advances in pharmacological effects of ginseng,acorus calamus and its couplet medicine on Alzheimer's disease
Yu-Chen ZHU ; Bo-Yu KUANG ; Jin-Ping LIANG ; Xiao-Lei PEI ; Jia-Zhu ZHAO ; Shi-Feng CHU ; Nai-Hong CHEN ; Yan-Tao YANG
Chinese Pharmacological Bulletin 2024;40(5):817-822
The pathogenesis of Alzheimer's disease(AD)is complex and unclear.Existing drugs can only alleviate its symp-toms,and there is an urgent need to develop effective therapeutic drugs.As the representative drugs of tonic and enlightening medicine,ginseng and acorus calamus have pharmacological effects to improve memory,improve learning ability and reduce cognitive impairment,which are commonly used in Chinese med-icine for the treatment of dementia.The combination of ginseng and acorus calamus can further promote the active ingredients in-to brain to exert their medicinal effects,and delay the process of AD through anti-inflammatory,anti-oxidative stress,modulation of neuronal-synaptic plasticity and other multiple pathways,with multi-level,multi-system and multi-target action characteristics.This paper attempts to summarize the existing research results and lay the foundation for further exploring the synergistic mech-anism of action of ginseng-acorus calamus combination and the dose-effect relationship of the combination,so as to provide a sci-entific basis for the development of innovative Chinese medicines for the prevention and treatment of AD.
10.A QCM Biosensor for Screening Arsenic(Ⅲ)Aptamers and Detecting Arsenic(Ⅲ)
Chu-Jun ZHENG ; Shi-Quan QIAN ; Xin-Pei LI ; Xu YAN ; Hai-Xuan HUANG ; Yu-Xuan WANG ; Yu-Wei YE ; Min YUAN
Chinese Journal of Biochemistry and Molecular Biology 2024;40(9):1282-1288
A quartz crystal microbalance(QCM)-systematic evolution of ligands by the exponential en-richment(SELEX)technique was developed to screen out aptamers with high affinity for arsenic(Ⅲ).A random single strand DNA library was designed and fixed on the mercaptoethylamine-modified crystal plate with arsenic(Ⅲ)as the target,and the free aptamer was captured in the solution,and the QCM-SELEX screening method was constructed.After 6 rounds of screening,the secondary library was se-quenced with high throughput method,and the 6S1 dissociation coefficient Kd value was 0.36 μmol/L based on QCM resonance frequency.Using 6S1 as a probe,the QCM biosensor was constructed for the detection of arsenic(Ⅲ).The sensor has a good linear relationship in the range of 0.01 μmol/L~0.2μmol/L,and the detection limit of arsenic(Ⅲ)is 5.2 nmol/L(3σ),indicatinggood selectivity.


Result Analysis
Print
Save
E-mail