1.Bis (2-butoxyethyl) Phthalate Delays Puberty Onset by Increasing Oxidative Stress and Apoptosis in Leydig Cells in Rats.
Miao Qing LIU ; Hai Qiong CHEN ; Hai Peng DAI ; Jing Jing LI ; Fu Hong TIAN ; Yi Yan WANG ; Cong De CHEN ; Xiao Heng LI ; Jun Wei LI ; Zhong Rong LI ; Ren Shan GE
Biomedical and Environmental Sciences 2023;36(1):60-75
OBJECTIVE:
This study investigated the effects of bis (2-butoxyethyl) phthalate (BBOP) on the onset of male puberty by affecting Leydig cell development in rats.
METHODS:
Thirty 35-day-old male Sprague-Dawley rats were randomly allocated to five groups mg/kg bw per day that were gavaged for 21 days with BBOP at 0, 10, 100, 250, or 500 mg/kg bw per day. The hormone profiles; Leydig cell morphological metrics; mRNA and protein levels; oxidative stress; and AKT, mTOR, ERK1/2, and GSK3β pathways were assessed.
RESULTS:
BBOP at 250 and/or 500 mg/kg bw per day decreased serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels mg/kg bw per day (P < 0.05). BBOP at 500 mg/kg bw per day decreased Leydig cell number mg/kg bw per day and downregulated Cyp11a1, Insl3, Hsd11b1, and Dhh in the testes, and Lhb and Fshb mRNAs in the pituitary gland (P < 0.05). The malondialdehyde content in the testis significantly increased, while Sod1 and Sod2 mRNAs were markedly down-regulated, by BBOP treatment at 250-500 mg/kg bw per day (P < 0.05). Furthermore, BBOP at 500 mg/kg bw per day decreased AKT1/AKT2, mTOR, and ERK1/2 phosphorylation, and GSK3β and SIRT1 levels mg/kg bw per day (P < 0.05). Finally, BBOP at 100 or 500 μmol/L induced ROS and apoptosis in Leydig cells after 24 h of treatment in vitro (P < 0.05).
CONCLUSION:
BBOP delays puberty onset by increasing oxidative stress and apoptosis in Leydig cells in rats.
UNLABELLED
The graphical abstract is available on the website www.besjournal.com.
Rats
;
Male
;
Animals
;
Leydig Cells/metabolism*
;
Testosterone
;
Glycogen Synthase Kinase 3 beta/pharmacology*
;
Rats, Sprague-Dawley
;
Sexual Maturation
;
Testis
;
Oxidative Stress
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
2.Effects of heat exposure and vitamin C intervention on oxidative stress and blood pressure changes in treadmill rats.
Wei DU ; Yun LI ; Fu Hai SHEN ; Xiao Hua JIANG ; Jing Rui TIAN ; Hong Min FAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(2):112-117
Objective: To investigate the effect of oxidative stress caused by heat exposure on the blood pressure increase of treadmill rats and the intervention of antioxidants. Methods: In June 2021, Twenty-four healthy SD male rats were randomly divided into four groups: normal temperature feeding, normal temperature treadmill, high temperature treadmill and high temperature treadmill supplementation with vitamin C groups, 6 rats in each group. The rats run on the platform in normal temperature or heat exposure environment for 30 min in the morning and in the afternoon daily, 6 days per week. The daily vitamin C supplement dose of high temperature treadmill supplementation with vitamin C group was 10 mg/kg. BP recordings were done at the end of the week. The rat vascular lipofuscin (LF) was detected by ELISA, the rat serum nitric oxide (NO) was detected by nitrate reductase method, the serum malondialdehyde (MDA) was detected by thibabituric acid method, the serum glutathione peroxidase (GPx) and superoxide dismutase (SOD) were detected by chemiluminescence method, and the serum catalase (CAT) was detected by ammonium molybdate method. The total antioxidant capacity (T-AOC) of serum was measured by iron reduction/antioxidant capacity method, and the content of nuclear erythroid 2-related factor 2 (Nrf2) in vascular tissue was measured by Western blot. The intra-group mean was compared by repeated measurement analysis of variance, and the inter-group mean was compared by single-factor analysis of variance and post-event LSD-t test. Results: Compared with the previous time point, the systolic BP and diastolic BP of the high temperature treadmill group were significantly increased at 7, 14 and 21 d, and decreased at 28 d which were higher than the initial level (P<0.05), and the systolic BP and diastolic BP values at each experimental time point were significantly higher than those of normal temperature treadmill group (P<0.001). The changes of thickening of the artery wall, no smoothing of the endodermis and irregular arrangement of muscle cells in high temperature treadmill group were observed. Compared with the normal temperature treadmill group, the content of MDA in serum, and LF in vascular tissue were significantly increased, the activities of SOD, CAT, T-AOC, the content of NO in serum, and the expression of Nrf2 in vascular tissue were significantly decreased in high temperature treadmill group (P<0.05). Compared with the high temperature treadmill group, the systolic BP and diastolic BP values at 7, 14, 21 and 28 d, the content of serum MDA and LF in vascular tissue were significantly decreased, the activities of CAT and T-AOC, and the expression of Nrf2 in vascular tissue significantly increased (P<0.05), the histopathological changes of the artery wall improved in high temperature treadmill supplementation with vitamin C group. Conclusion: Heat exposure has effect on oxidative stress, which may be related to the increase of BP. Vitamin C as an anti-oxidative enhancer can prevent those negative effects, which could alleviate the pathological changes of vessel intima in heat-exposed rats. And the Nrf2 may be a regulated factor to vascular protection.
Male
;
Animals
;
Rats
;
Ascorbic Acid
;
Antioxidants/pharmacology*
;
Blood Pressure
;
Hot Temperature
;
NF-E2-Related Factor 2
;
Oxidative Stress
;
Fever
3.Bloodletting Acupuncture at Jing-Well Points Alleviates Myocardial Injury in Acute Altitude Hypoxic Rats by Activating HIF-1α/BNIP3 Signaling-Mediated Mitochondrial Autophagy and Decreasing Oxidative Stress.
Chao WANG ; Meng-Xin LI ; Yun-di LI ; Yong-Ping LI
Chinese journal of integrative medicine 2023;29(2):170-178
OBJECTIVE:
To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat.
METHODS:
Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling.
RESULTS:
BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH.
CONCLUSION
BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.
Animals
;
Rats
;
Acupuncture Therapy
;
Altitude
;
Apoptosis
;
Autophagy
;
Bloodletting
;
Hypoxia/metabolism*
;
Membrane Proteins/pharmacology*
;
Mitochondrial Proteins/pharmacology*
;
Oxidative Stress
;
Rats, Sprague-Dawley
4.PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress.
Tingting LAN ; Fei BI ; Yuchan XU ; Xiaoli YIN ; Jie CHEN ; Xue HAN ; Weihua GUO
International Journal of Oral Science 2023;15(1):10-10
Xenogenic organ transplantation has been considered the most promising strategy in providing possible substitutes with the physiological function of the failing organs as well as solving the problem of insufficient donor sources. However, the xenograft, suffered from immune rejection and ischemia-reperfusion injury (IRI), causes massive reactive oxygen species (ROS) expression and the subsequent cell apoptosis, leading to the xenograft failure. Our previous study found a positive role of PPAR-γ in anti-inflammation through its immunomodulation effects, which inspires us to apply PPAR-γ agonist rosiglitazone (RSG) to address survival issue of xenograft with the potential to eliminate the excessive ROS. In this study, xenogenic bioroot was constructed by wrapping the dental follicle cells (DFC) with porcine extracellular matrix (pECM). The hydrogen peroxide (H2O2)-induced DFC was pretreated with RSG to observe its protection on the damaged biological function. Immunoflourescence staining and transmission electron microscope were used to detect the intracellular ROS level. SD rat orthotopic transplantation model and superoxide dismutase 1 (SOD1) knockout mice subcutaneous transplantation model were applied to explore the regenerative outcome of the xenograft. It showed that RSG pretreatment significantly reduced the adverse effects of H2O2 on DFC with decreased intracellular ROS expression and alleviated mitochondrial damage. In vivo results confirmed RSG administration substantially enhanced the host's antioxidant capacity with reduced osteoclasts formation and increased periodontal ligament-like tissue regeneration efficiency, maximumly maintaining the xenograft function. We considered that RSG preconditioning could preserve the biological properties of the transplanted stem cells under oxidative stress (OS) microenvironment and promote organ regeneration by attenuating the inflammatory reaction and OS injury.
Mice
;
Humans
;
Rats
;
Animals
;
Swine
;
PPAR gamma/pharmacology*
;
Reactive Oxygen Species/pharmacology*
;
Heterografts
;
Hydrogen Peroxide/pharmacology*
;
Rats, Sprague-Dawley
;
Rosiglitazone/pharmacology*
;
Oxidative Stress
5.Effect of acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) on the expression of apoptosis-related factors in rats with premature ovarian insufficiency based on oxidative stress.
Jing YAN ; Ji-Yu ZHAO ; Lu-Yun YIN ; Xiao-Qin YAN ; Xiao-Fei JIN
Chinese Acupuncture & Moxibustion 2023;43(4):454-460
OBJECTIVE:
To explore the possible mechanism of acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) on premature ovarian insufficiency (POI) from the perspective of oxidative stress.
METHODS:
Sixty female SD rats were randomly divided into a blank group, a model group, a sham acupuncture group, a medication group, and an acupuncture group, 12 rats in each group. Except the blank group, the rats in the remaining groups were intraperitoneally injected with cyclophosphamide to establish the POI model. After the model was successfully established, the rats in the acupuncture group were treated with acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28), with a depth of about 12 mm, and the needle was retained for 30 min; the acupuncture was given once a day, for a total of 4 weeks. The rats in the sham acupuncture group were treated with blunt-head needle to tap the skin surface of "Zhibian" (BL 54), without penetrating the skin, once a day for 4 weeks. The rats in the medication group were treated with estradiol valerate by gastric gavage for 4 weeks. After the intervention, the level of reactive oxygen species (ROS) in the ovarian tissue was detected by fluorescence probe; the expression of c-Jun N-terminal kinase (JNK), forkhead box O1 (FoxO1), tumor suppressor gene protein 53 (p53) and p53 up-regulated modulator of apoptosis (Puma) mRNA and protein in ovarian tissue were detected by real-time fluorescence quantitative PCR and Western blot.
RESULTS:
Compared with the blank group, the level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the model group were increased (P<0.01). Compared with the model group, the level of ROS and the expression of p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the sham acupuncture group were slightly reduced, but the difference was not statistically significant (P>0.05). The level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the acupuncture group and the medication group were reduced (P<0.01).
CONCLUSION
Acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) could improve the level of oxidative stress, down-regulate the expression of apoptosis-related factors JNK, FoxO1, p53 and Puma induced by oxidative stress, and inhibit the premature failure of ovarian reserve function caused by apoptosis of ovarian granulosa cells in POI rats.
Humans
;
Rats
;
Female
;
Animals
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
Tumor Suppressor Protein p53/genetics*
;
Apoptosis Regulatory Proteins
;
Acupuncture Therapy
;
Primary Ovarian Insufficiency/therapy*
;
Apoptosis
;
RNA, Messenger
;
Oxidative Stress
;
Acupuncture Points
6.Therapeutic effect and mechanism of Mailuo Shutong Pills on posterior limb swelling caused by femur fracture in rats based on intestinal flora and intestinal metabolism.
Lan YANG ; Ming-Fei LIU ; Cheng-Hong SUN ; Hai-Xin XIANG ; Yu MIAO ; Guo-Liang CHENG
China Journal of Chinese Materia Medica 2023;48(17):4711-4721
This study aimed to investigate the protective effect and underlying mechanism of Mailuo Shutong Pills(MLST) on posterior limb swelling caused by femur fracture in rats. The rats were randomly divided into a sham operation group, a model group, a low-dose MLST group(1.8 g·kg~(-1)·d~(-1)), a high-dose MLST group(3.6 g·kg~(-1)·d~(-1)), and a positive drug group(60 mg·kg~(-1)·d~(-1) Maizhiling Tablets). The femur in the sham operation group was exposed and the wound was sutured, while the other four groups underwent mechanical damage to cause femur fracture. The rats were treated with corresponding drugs by gavage 7 days before modeling and 5 days after modeling, while those in the sham operation group and the model group were given an equivalent dose of distilled water by gavage. Hematoxylin-eosin(HE) staining was used to detect the pathological injury of the posterior limb muscle tissues in rats, and the degree of hind limb swelling was measured. The enzyme-linked immunosorbent assay(ELISA) kit was used to detect the expression levels of interleukin-6(IL-6), interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α) in the serum of rats in each group. The activity of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and glutathione peroxidase(GSH-Px) in rat serum was also measured. Western blot was used to detect the protein expression levels of heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), and nuclear transcription factor E2-related factor 2(Nrf2) in rat posterior limb muscle tissues. The changes in the intestinal flora and intestinal metabolites in rats were detected by 16S rDNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), respectively, to explore the underlying mechanism of MLST in treating posterior limb swelling caused by femur fracture in rats. Compared with the model group, MLST significantly improved the degree of posterior limb swelling in rats, reduced the levels of serum inflammatory factors, and alleviated oxidative stress injury. The HE staining results showed that the inflammatory infiltration in the posterior limb muscle tissues of rats in the MLST groups was significantly improved. Western blot results showed that MLST significantly increased the protein expression of HO-1, NQO1, and Nrf2 in rat posterior limb muscle tissues compared with the model group. The 16S rDNA sequencing results showed that MLST improved the disorder of intestinal flora in rats after femur fracture. The UPLC-MS/MS results showed that MLST significantly affected the bile acid biosynthesis and metabolism pathway in the intestine after femur fracture, and the Spearman analysis confirmed that the metabolite deoxycholic acid involved in bile acid biosynthesis was positively correlated with the abundance of Turicibacter. The metabolite cholic acid was positively correlated with the abundance of Papilibacter, Staphylococcus, and Intestinimonas. The metabolite lithocholic acid was positively correlated with Papilibacter and Intestinimonas. The above results indicated that MLST could protect against the posterior limb swelling caused by femur fracture in rats. This protective effect may be achieved by improving the pathological injury of the posterior limb muscle, reducing the expression levels of inflammatory and oxidative stress-related factors in serum, reducing the oxidative injury of the posterior limb muscle, improving intestinal flora, and balancing the biosynthesis of bile acids in the intestine.
Rats
;
Animals
;
NF-E2-Related Factor 2/metabolism*
;
Gastrointestinal Microbiome
;
Chromatography, Liquid
;
Multilocus Sequence Typing
;
Tandem Mass Spectrometry
;
Oxidative Stress
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Femur
;
Bile Acids and Salts
;
DNA, Ribosomal
;
Superoxide Dismutase/metabolism*
7.Total triterpenes of Euphorbium alleviates rheumatoid arthritis via Nrf2/HO-1/GPX4 pathway.
Mao-Jie ZHOU ; Wei TAN ; Ha-Mu-la-Ti HASIMU ; Lei XU ; Zheng-Yi GU ; Jun ZHAO
China Journal of Chinese Materia Medica 2023;48(18):4834-4842
This study aims to investigate the effect and mechanism of total triterpenes of Euphorbium in treating rheumatoid arthritis(RA). The rat model of RA was established with Freund's complete adjuvant(FCA). Male rats were randomly assigned into control, model, Tripterygium glycosides(7.5 mg·kg~(-1)), and low-, medium-, and high-dose total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1), respectively) groups, with 10 rats in each group. In other groups except the control group, 0.2 mL FCA was injected into the right hind toe. Rats in the intervention groups were administrated with corresponding drugs by gavage, and the control group and the model group with the same volume of 0.5% CMC-Na solution once a day. During the treatment period, the swelling degree of the hind paw was measured and the arthritis was scored until day 30. At the end of drug administration, the pathological changes of the joint tissue were observed by hematoxylin-eosin staining. The content of malondialdehyde(MDA), glutathione(GSH), and Fe~(2+) and the activity of superoxide dismutase(SOD) in the joint tissue were measured by biochemical colorimetry. RT-PCR was performed to determine the mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), and acyl-CoA synthetase long chain family member 4(ACSL4) in the joint tissue. Western blot was employed to determine the protein levels of Nrf2, Kelch-like ECH-associated protein 1(Keap1), heme oxygenase-1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), SOD2, GPX4, and ACSL4 in the joint tissue. The results showed that the treatment with Tripterygium glycosides(7.5 mg·kg~(-1)) and total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1)) alleviated the swelling degree of bilateral hind limbs, decreased the arthritis score, reduced joint tissue lesions and the content of MDA and Fe~(2+) in the joint tissue, and increased GSH content and SOD activity. Furthermore, the interventions up-regulated the protein and mRNA levels of Nrf2 and GPX4, down-regulated the protein and mRNA levels of ACSL4, and up-regulated the protein levels of Keap1, NQO1, HO-1, and SOD2 in the Nrf2/HO-1/GPX4. In summary, the total triterpenes of Euphorbium can treat RA by inhibiting lipid peroxidation and abnormal ferroptosis, which may involve the Nrf2/HO-1/GPX4 signaling pathway.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Triterpenes/pharmacology*
;
Oxidative Stress
;
Arthritis, Rheumatoid/genetics*
;
Glutathione
;
Superoxide Dismutase/metabolism*
;
Glycosides/pharmacology*
;
RNA, Messenger/metabolism*
8.Pathogenesis of chronic heart failure in rats based on ferroptosis-mediated oxidative stress and intervention effect of Shenfu Injection.
Zi-Yi WANG ; Qian ZHANG ; Jin GUO ; Shu-Min HUANG ; Li-Chong MENG ; Zhi-Xi HU
China Journal of Chinese Materia Medica 2023;48(19):5285-5293
This study aims to investigate the pathogenesis of chronic heart failure based on ferroptosis-mediated oxidative stress and predict the targets of Shenfu Injection in treating chronic heart failure. A rat model of chronic heart failure was established by the isoproterenol induction method. According to the random number table method, the modeled rats were assigned into three groups: a model group, a Shenfu Injection group, and a ferrostatin-1(ferroptosis inhibitor) group. In addition, a normal group was designed. After 15 days of intervention, the cardiac mass index and left ventricular mass index were determined. Echocardiography was employed to eva-luate the cardiac function. Hematoxylin-eosin staining and Masson staining were employed to reveal the pathological changes and fibrosis of the heart, and Prussian blue staining to detect the aggregation of iron ions in the myocardial tissue. Transmission electron microscopy was employed to observe the mitochondrion ultrastructure in the myocardial tissue. Colorimetry was adopted to measure the levels of iron metabolism, lipid peroxidation, and antioxidant indicators. Flow cytometry was employed to measure the content of lipid-reactive oxygen species(ROS) and the fluorescence intensity of ROS. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of ferroptosis-related factors in the myocardial tissue. The results showed that the rats in the model group had reduced cardiac function, elevated levels of total iron and Fe~(2+), lowered level of glutathione(GSH), increased malondialdehyde(MDA), decreased superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px), and rising levels of ROS and lipid-ROS. In addition, the model group showed fibrous tissue hyperplasia with inflammatory cell infiltration and myocardial fibrosis, iron ion aggregation, and characteristic mitochondrial changes specific for iron death. Moreover, the model group showcased upregulated protein and mRNA levels of p53 and COX2 and downregulated protein and mRNA levels of GPX4, FTH1, SLC7A11, and Nrf2 in the myocardial tissue. The intervention with Shenfu Injection significantly improved the cardiac function, recovered the iron metabolism, lipid peroxidation, and antioxidant indicators, decreased iron deposition, improved mitochondrial structure and function, and alleviated inflammatory cell infiltration and fibrosis. Furthermore, Shenfu Injection downregulated the mRNA and protein levels of p53 and COX2 and upregulated the mRNA and protein levels of GPX4, FTH1, SLC7A11, and Nrf2 in the myocardial tissue. Shenfu Injection can improve the cardiac function by regulating iron metabolism, inhibiting ferroptosis, and reducing oxidative stress injury.
Animals
;
Rats
;
Antioxidants
;
Reactive Oxygen Species
;
Cyclooxygenase 2
;
Ferroptosis
;
NF-E2-Related Factor 2
;
Tumor Suppressor Protein p53
;
Heart Failure/genetics*
;
Oxidative Stress
;
Chronic Disease
;
Glutathione
;
Fibrosis
;
Iron
;
RNA, Messenger
;
Lipids
9.Mechanisms mediating the inhibitory effects of quercetin against phthalates-induced testicular oxidative damage in rats.
Lilan LIU ; Ruya DENG ; Wenjin ZHOU ; Min LIN ; Lingzi XIA ; Haitao GAO
Journal of Southern Medical University 2023;43(4):577-584
OBJECTIVE:
To explore the mechanism underlying the inhibitory effect of quercetin against testicular oxidative damage induced by a mixture of 3 commonly used phthalates (MPEs) in rats.
METHODS:
Forty male Sprague-Dawley rats were randomly divided into control group, MPEs exposure group, and MPEs with low-, median- and high-dose quercetin treatment groups. For MPEs exposure, the rats were subjected to intragastric administration of MPEs at the daily dose of 900 mg/kg for 30 consecutive days; Quercetin treatments were administered in the same manner at the daily dose of 10, 30, and 90 mg/kg. After the treatments, serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testicular malondialdeyhde (MDA), catalase (CAT) and superoxide dismutase (SOD) were detected, and testicular pathologies of the rats were observed with HE staining. The expressions of nuclear factor-E2-related factor 2 (Nrf2), Kelch-like ECH2 associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in the testis were detected using immunofluorescence assay and Western blotting.
RESULTS:
Compared with the control group, the rats with MPEs exposure showed significant reductions of the anogenital distance, weight of the testis and epididymis, and the coefficients of the testis and epididymis with lowered serum testosterone, LH and FSH levels (P < 0.05). Testicular histological examination revealed atrophy of the seminiferous tubules, spermatogenic arrest, and hyperplasia of the Leydig cells in MPEs-exposed rats. MPEs exposure also caused significant increments of testicular Nrf2, MDA, SOD, CAT and HO-1 expressions and lowered testicular Keap1 expression (P < 0.05). Treatment with quercetin at the median and high doses significantly ameliorated the pathological changes induced by MPEs exposure (P < 0.05).
CONCLUSION
Quercetin treatment inhibits MPEs-induced oxidative testicular damage in rats possibly by direct scavenging of free radicals to lower testicular oxidative stress and restore the regulation of the Nrf2 signaling pathway.
Rats
;
Male
;
Animals
;
Testis
;
Quercetin/pharmacology*
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Oxidative Stress
;
Testosterone/pharmacology*
;
Superoxide Dismutase/metabolism*
;
Follicle Stimulating Hormone
;
Luteinizing Hormone
10.Salidroside alleviates retinopathy in diabetes rats by inhibiting oxidative stress and immune inflammation through activating PI3K/AKT pathway.
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):404-409
Objective To investigate the ameliorative effect of salidroside on diabetes retinopathy (DR) rats and its mechanism. Methods Male SD rats were randomly divided into blank group, model group, low-dose and high-dose salidroside treatment groups. Except for the blank group, other groups were modeled by intraperitoneal injection of streptozotocin. After successful modeling, treatment groups were injected intraperitoneally with [50 mg/(kg.d)] and [100 mg/(kg.d)] salidroside respectively, for 4 weeks; the blank group and model group were injected with corresponding doses of saline. ELISA was used to measure the expression levels of antioxidant-related enzyme activity and inflammatory factors in blood glucose and serum of rats in each group. Retinal tissue lesions were detected by HE staining, and the expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in retinal tissues were detected by immunohistochemical staining. Western blot analysis was used to detect the expression of phosphatidylinositol 3 kinase (PI3K) , nuclear factor κB p65 (NF-κB p65), phosphorylated p38 MAPK (p-p38 MAPK), and phosphorylated protein kinase B (p-AKT) proteins. Results Compared with model group, salidroside could significantly reduce blood glucose level and increase body mass in DR rats. The serum levels of superoxide dismutase (SOD) and catalase (CAT) were significantly increased, while the levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and IL-1β were reduced. The protein expression of VEGF, ICAM-1, NF-κB p65 and p-p38 MAPK was significantly decreased, while the protein expression of PI3K and p-AKT was increased. Conclusion Salidroside can reduce DR in rats by inhibiting oxidative stress and immune inflammatory response, which may be related to the reduction of abnormal expression of VEGF and ICAM-1 and the activation of PI3K/AKT signaling pathway.
Animals
;
Male
;
Rats
;
Blood Glucose
;
Diabetes Mellitus
;
Inflammation/metabolism*
;
Intercellular Adhesion Molecule-1/metabolism*
;
NF-kappa B/metabolism*
;
Oxidative Stress
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Retinal Diseases
;
Tumor Necrosis Factor-alpha/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*

Result Analysis
Print
Save
E-mail