2.Mechanism of nuclear protein 1 in the resistance to axitinib in clear cell renal cell carcinoma.
Yun Chong LIU ; Zong Long WU ; Li Yuan GE ; Tan DU ; Ya Qian WU ; Yi Meng SONG ; Cheng LIU ; Lu Lin MA
Journal of Peking University(Health Sciences) 2023;55(5):781-792
OBJECTIVE:
To explore the potential mechanism of resistance to axitinib in clear cell renal cell carcinoma (ccRCC), with a view to expanding the understanding of axitinib resistance, facilitating the design of more specific treatment options, and improving the treatment effectiveness and survival prognosis of patients.
METHODS:
By exploring the half maximum inhibitory concentration (IC50) of axitinib on ccRCC cell lines 786-O and Caki-1, cell lines resistant to axitinib were constructed by repeatedly stimulated with axitinib at this concentration for 30 cycles in vitro. Cell lines that were not treated by axitinib were sensitive cell lines. The phenotypic differences of cell proliferation and apoptosis levels between drug resistant and sensitive lines were tested. Genes that might be involved in the drug resistance process were screened from the differentially expressed genes that were co-upregulated in the two drug resistant lines by transcriptome sequencing. The expression level of the target gene in the drug resistant lines was verified by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB). The expression differences of the target gene in ccRCC tumor tissues and adjacent tissues were analyzed in the Gene Expression Profiling Interactive Analysis (GEPIA) public database, and the impact of the target gene on the prognosis of ccRCC patients was analyzed in the Kaplan-Meier Plotter (K-M Plotter) database. After knocking down the target gene in the drug resistant lines using RNA interference by lentivirus vector, the phenotypic differences of the cell lines were tested again. WB was used to detect the levels of apoptosis-related proteins in the different treated cell lines to find molecular pathways that might lead to drug resistance.
RESULTS:
Cell lines 786-O-R and Caki-1-R resistant to axitinib were successfully constructed in vitro, and their IC50 were significantly higher than those of the sensitive cell lines (10.99 μmol/L, P < 0.01; 11.96 μmol/L, P < 0.01, respectively). Cell counting kit-8 (CCK-8) assay, colony formation, and 5-ethynyl-2 '-deoxyuridine (EdU) assay showed that compared with the sensitive lines, the proliferative ability of the resistant lines decreased, but apoptosis staining showed a significant decrease in the level of cell apoptosis of the resistant lines (P < 0.01). Although resistant to axitinib, the resistant lines had no obvious new replicated cells in the environment of 20 μmol/L axitinib. Nuclear protein 1 (NUPR1) gene was screened by transcriptome sequencing, and its RNA (P < 0.0001) and protein expression levels significantly increased in the resistant lines. Database analysis showed that NUPR1 was significantly overexpressed in ccRCC tumor tissue (P < 0.05); the ccRCC patients with higher expression ofNUPR1had a worse survival prognosis (P < 0.001). Apoptosis staining results showed that knockdown ofNUPR1inhibited the anti-apoptotic ability of the resistant lines to axitinib (786-O, P < 0.01; Caki-1, P < 0.05). WB results showed that knocking downNUPR1decreased the protein level of B-cell lymphoma-2 (BCL2), increased the protein level of BCL2-associated X protein (BAX), decreased the protein level of pro-caspase3, and increased the level of cleaved-caspase3 in the resistant lines after being treated with axitinib.
CONCLUSION
ccRCC cell lines reduce apoptosis through theNUPR1 -BAX/ BCL2 -caspase3 pathway, which is involved in the process of resistance to axitinib.
Humans
;
Carcinoma, Renal Cell/metabolism*
;
Axitinib/pharmacology*
;
Kidney Neoplasms/metabolism*
;
bcl-2-Associated X Protein
;
Nuclear Proteins
;
Cell Line, Tumor
;
Apoptosis
;
Cell Proliferation
3.Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients.
Xianggui YUAN ; Teng YU ; Jianzhi ZHAO ; Huawei JIANG ; Yuanyuan HAO ; Wen LEI ; Yun LIANG ; Baizhou LI ; Wenbin QIAN
Frontiers of Medicine 2023;17(5):889-906
Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin's lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ⩾ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.
Humans
;
DNA Copy Number Variations
;
Nuclear Proteins/genetics*
;
Central Nervous System Neoplasms/pathology*
;
Transcription Factors/genetics*
;
Prognosis
;
Lymphoma/genetics*
;
Genomics
;
China
;
Central Nervous System/pathology*
;
Bromodomain Containing Proteins
;
Cell Cycle Proteins/genetics*
5.TCOF1 Gene variation in Treacher Collins syndrome and evaluation of speech rehabilitation after bone bridge surgery.
Yonghua LI ; Wenyue CHI ; Ken LIN ; Jinyan ZU ; Hua SHAO ; Zhiyong MAO ; Quandong CHEN ; Jing MA
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(9):748-754
Objective:By analyzing the clinical phenotypic characteristics and gene sequences of two patients with Treacher Collins syndrome(TCS), the biological causes of the disease were determined. Then discuss the therapeutic effect of hearing intervention after bone bridge implantation. Methods:All clinical data of the two family members were collected, and the patients signed the informed consent. The peripheral blood of the proband and family members was extracted, DNA was extracted for whole exome sequencing, and Sanger sequencing was performed on the family members for the mutation site.TCOF1genetic mutations analysis was performed on the paitents. Then, the hearing threshold and speech recognition rate of family 2 proband were evaluated and compared under the sound field between bare ear and wearing bone bridge. Results:In the two pedigrees, the probands of both families presented with auricle deformity, zygomatic and mandibular hypoplasia, micrognathia, hypotropia of the eye fissure, and hypoplasia of the medial eyelashes. The proband of Family 1 also presents with specific features including right-sided narrow anterior nasal aperture and dental hypoplasia, which were consistent with the clinical diagnosis of Treacher Collins syndrome. Genetic testing was conducted on both families, and two heterozygous mutations were identified in the TCOF1 gene: c. 1350_1351dupGG(p. A451Gfs*43) and c. 4362_4366del(p. K1457Efs*12), resulting in frameshift mutations in the amino acid sequence. Sanger sequencing validation of the TCOF1 gene in the parents of the proband in Family 1 did not detect any mutations. Proband 1 TCOF1 c. 1350_1351dupGG heterozygous variants have not been reported previously. The postoperative monosyllabic speech recognition rate of family 2 proband was 76%, the Categories of Auditory Performance(CAP) score was 6, and the Speech Intelligibility Rating(SIR) score was 4. Assessment using the Meaningful Auditory Integration Scale(MAIS) showed notable improvement in the patient's auditory perception, comprehension, and usage of hearing aids. Evaluation using the Glasgow Children's Benefit Inventory and quality of life assessment revealed significant improvements in the child's self care abilities, daily living and learning, social interactions, and psychological well being, as perceived by the parents. Conclusion:This study has elucidated the biological cause of Treacher Collins syndrome, enriched the spectrum of TCOF1 gene mutations in the Chinese population, and demonstrated that bone bridge implantation can improve the auditory and speech recognition rates in TCS patients.
Child
;
Humans
;
Mandibulofacial Dysostosis/genetics*
;
Quality of Life
;
Speech
;
Parents
;
Mutation
;
Nuclear Proteins/genetics*
;
Phosphoproteins/genetics*
6.Research progress of the regulation of orphan nuclear receptors on chronic liver diseases.
Zhi-Hui YANG ; Jia-Hui WANG ; Lei WANG ; Xue-Lin DUAN ; Hong-Hong WANG ; Yue PENG ; Tie-Jian ZHAO ; Yang ZHENG
Acta Physiologica Sinica 2023;75(4):555-568
The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.
Humans
;
Orphan Nuclear Receptors/metabolism*
;
Receptors, Steroid/physiology*
;
Ligands
;
Liver
;
Liver Diseases
;
Intercellular Signaling Peptides and Proteins
7.Blaps rynchopetera combined with cyclophosphamide affects proliferation and apoptosis of lung cancer cells via Wnt/β-catenin signaling pathway.
Jing-Nan YAN ; Ke MA ; Wen-Jie LIU ; Ying LIN ; Xiu-Yu LI ; Dan WU
China Journal of Chinese Materia Medica 2023;48(20):5603-5611
This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/β-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and β-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/β-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.
Rats
;
Animals
;
Wnt Signaling Pathway
;
Lung Neoplasms/genetics*
;
beta Catenin/metabolism*
;
Proliferating Cell Nuclear Antigen
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Inbred Lew
;
Rats, Sprague-Dawley
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Proliferation
;
Cyclophosphamide
;
Cell Line, Tumor
8.Genetic diagnosis of Branchio-Oto syndrome pedigree due to a de novo heterozygous deletion of EYA1 gene.
Jingjing LI ; Hongfei KANG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(9):1128-1133
OBJECTIVE:
To explore the genetic basis for a Chinese pedigree affected with Branchio-Oto syndrome (BOS).
METHODS:
A pedigree with BOS which had presented at the Genetics and Prenatal Diagnosis Center of the First Affiliated Hospital of Zhengzhou University in May 2021 was selected as the study subject. Clinical data of the pedigree was collected. Peripheral blood samples of the proband and her parents were collected. Whole exome sequencing (WES) was carried out for the proband. Multiplex ligation-dependent probe amplification (MLPA) was used to verify the result of WES, short tandem repeat (STR) analysis was used to verify the relationship between the proband and her parents, and the pathogenicity of the candidate variant was analyzed.
RESULTS:
The proband, a 6-year-old girl, had manifested severe congenital deafness, along with inner ear malformation and bilateral branchial fistulae. WES revealed that she has harbored a heterozygous deletion of 2 466 kb at chromosome 8q13.3, which encompassed the EYA1 gene. MLPA confirmed that all of the 18 exons of the EYA1 gene were lost, and neither of her parents has carried the same deletion variant. STR analysis supported that both of her parents are biological parents. Based on the guidelines from the American College of Medical Genetics and Genomics, the deletion was classified as pathogenic (PVS1+PS2+PM2_Supporting+PP4).
CONCLUSION
The heterozygous deletion of EYA1 gene probably underlay the pathogenicity of BOS in the proband, which has provided a basis for the clinical diagnosis.
Humans
;
Female
;
Pregnancy
;
Child
;
Pedigree
;
Family
;
Parents
;
Chromosomes, Human, Pair 3
;
Exons
;
Nuclear Proteins/genetics*
;
Protein Tyrosine Phosphatases
;
Intracellular Signaling Peptides and Proteins/genetics*
9.Characteristics of genetic variants in 134 patients with Acute myeloid leukemia.
Miao HE ; Xiaochen ZHAO ; Hongjuan TIAN ; Shuting ZHANG ; Fangqing ZHAO ; Xi ZHANG ; Tao WU
Chinese Journal of Medical Genetics 2023;40(10):1222-1227
OBJECTIVE:
To analyze the characteristics of genetic variants in 134 patients diagnosed with Acute myeloid leukemia (AML).
METHODS:
Clinical data of the 134 patients with AML (non-acute promyelocytic leukemia) initially diagnosed at the 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army from June 2017 to June 2022 were retrospectively analyzed. Potential variants of AML-related genes were detected by next-generation sequencing, and the frequency of variants was analyzed by using SPSS v26.0 software, and likelihood ratio χ2 test and Fisher exact test were used for data analysis.
RESULTS:
The patients had included 72 males and 62 females, with a gender ratio of 1.7 : 1 and a median age of 51 years (9 ~ 86 years old). One hundred twenty patients (76.1%) had harbored at least one genetic variant, including 26 (19.4%) having a single variant, 27 (20.1%) having two variants, and 49 (36.6%) having >= 3 variants. 32 (23.9%) had no detectable variants. Genetic variants detected in over 10% of the 134 patients had included NPM1 (n = 24, 17.91%), FLT3-ITD (n = 21, 15.67%), DNMT3A (n = 20, 14.93%), CEBPA (single variant; n = 14, 10.45%), TET2 (n = 14, 10.45%), and NRAS (n = 14, 10.45%). The patients were also divided into low risk, intermediate risk and high risk groups based on their chromosomal karyotypes. The mutational rates for genes in different groups have varied, with 19 patients from the low risk group harboring variants of NRAS (n = 4, 21.05%), KRAS (n = 4, 21.05%), and KIT (n = 2, 10.53%); and 96 patients from the intermediate risk group harboring variants of NPM1 (n = 24, 25.00%), FLT3-ITD (n = 20, 20.83%), DNMT3A (n = 18, 18.75%), CEBPA (n = 12, 12.50%), and TET2 genes (n = 12, 12.50%). The mutational frequencies for the 19 patients from the high risk group were ASXL1 (n = 7, 21.05%), NRAS (n = 3, 15.97%), TP53 (n = 3, 15.79%), and EZH2 (n = 2, 10.53%). A significant difference was found in the frequencies of KIT, NPM1, FLT3-ITD, DNMT3A, and ASXL1 gene variants among the low-risk, medium-risk, and high-risk groups.
CONCLUSION
AML patients have a high frequency for genetic variants, with 76.1% harboring at least one variant. The frequency of genetic variants have varied among patients with different chromosomal karyotypes, and there are apparent dominant variants. KIT, NPM1, FLT3-ITD, DNMT3A, and ASXL1 may be used as prognostic factors for evaluating their prognosis.
Aged, 80 and over
;
Female
;
Humans
;
Male
;
Middle Aged
;
Leukemia, Myeloid, Acute/genetics*
;
Leukemia, Promyelocytic, Acute
;
Nuclear Proteins
;
Retrospective Studies
;
Child
;
Adolescent
;
Young Adult
;
Adult
;
Aged
;
East Asian People
10.Analysis of clinical features and ATRX gene variants in a Chinese pedigree affected with X-linked alpha thalassemia mental retardation (ATR-X) syndrome.
Rui DONG ; Yali YANG ; Hui GUO ; Min GAO ; Yuqiang LYU ; Yue LI ; Xiaomeng YANG ; Yi LIU
Chinese Journal of Medical Genetics 2023;40(12):1508-1511
OBJECTIVE:
To explore the clinical characteristics and genetic basis of two brothers featuring X-linked alpha thalassemia mental retardation (ATR-X) syndrome.
METHODS:
An infant who had presented at the Qilu Children's Hospital in 2020 for unstable upright head and inability to roll over and his family were selected as the study subjects. The clinical features of the child and one of his brothers were summarized, and their genomic DNA was subjected to targeted capture and next generation sequencing (NGS).
RESULTS:
The brothers had presented with mental retardation and facial dysmorphisms. NGS revealed that they had both harbored a hemizygous c.5275C>A variant of the ATRX gene located on the X chromosome, which was inherited from their mother.
CONCLUSION
The siblings were diagnosed with ATR-X syndrome. The discovery of the c.5275C>A variant has enriched the mutational spectrum of the ATRX gene.
Humans
;
Infant
;
Male
;
alpha-Thalassemia/diagnosis*
;
Ataxia Telangiectasia Mutated Proteins/genetics*
;
East Asian People
;
Intellectual Disability/genetics*
;
Mental Retardation, X-Linked/diagnosis*
;
Pedigree
;
X-linked Nuclear Protein/genetics*

Result Analysis
Print
Save
E-mail