1.nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story.
Li-Juan ZHU ; Fei LI ; Dong-Ya ZHU
Neuroscience Bulletin 2023;39(9):1439-1453
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Humans
;
Nitric Oxide Synthase Type I/metabolism*
;
Adaptor Proteins, Signal Transducing
;
Brain/metabolism*
;
Nervous System Diseases
2.Chronic Intermittent Hypobaric Hypoxia Ameliorates Renal Vascular Hypertension Through Up-regulating NOS in Nucleus Tractus Solitarii.
Na LI ; Yue GUAN ; Yan-Ming TIAN ; Hui-Jie MA ; Xiangjian ZHANG ; Yi ZHANG ; Sheng WANG
Neuroscience Bulletin 2019;35(1):79-90
Chronic intermittent hypobaric hypoxia (CIHH) is known to have an anti-hypertensive effect, which might be related to modulation of the baroreflex in rats with renal vascular hypertension (RVH). In this study, RVH was induced by the 2-kidney-1-clip method (2K1C) in adult male Sprague-Dawley rats. The rats were then treated with hypobaric hypoxia simulating 5000 m altitude for 6 h/day for 28 days. The arterial blood pressure (ABP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were measured before and after microinjection of L-arginine into the nucleus tractus solitarii (NTS) in anesthetized rats. Evoked excitatory postsynaptic currents (eEPSCs) and spontaneous EPSCs (sEPSCs) were recorded in anterogradely-labeled NTS neurons receiving baroreceptor afferents. We measured the protein expression of neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS) in the NTS. The results showed that the ABP in RVH rats was significantly lower after CIHH treatment. The inhibition of ABP, HR, and RSNA induced by L-arginine was less in RVH rats than in sham rats, and greater in the CIHH-treated RVH rats than the untreated RVH rats. The eEPSC amplitude in NTS neurons receiving baroreceptor afferents was lower in the RVH rats than in the sham rats and recovered after CIHH. The protein expression of nNOS and eNOS in the NTS was lower in the RVH rats than in the sham rats and this decrease was reversed by CIHH. In short, CIHH treatment decreases ABP in RVH rats via up-regulating NOS expression in the NTS.
Animals
;
Baroreflex
;
physiology
;
Blood Pressure
;
drug effects
;
Hypertension
;
metabolism
;
Hypoxia
;
chemically induced
;
Kidney
;
drug effects
;
metabolism
;
Male
;
Nitric Oxide Synthase Type I
;
drug effects
;
metabolism
;
Rats, Sprague-Dawley
;
Solitary Nucleus
;
metabolism
3.Moutan Cortex Radicis inhibits the nigrostriatal damage in a 6-OHDA-induced Parkinson's disease model.
Yeong-Gon CHOI ; Yeon-Mi HONG ; Li-Hua KIM ; Sujung YEO ; Sabina LIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):490-498
The traditionally used oriental herbal medicine Moutan Cortex Radicis [MCR; Paeonia Suffruticosa Andrews (Paeoniaceae)] exerts anti-inflammatory, anti-spasmodic, and analgesic effects. In the present study, we investigated the therapeutic effects of differently fractioned MCR extracts in a 6-hydroxydopamine (OHDA)-induced Parkinson's disease model and neuro-blastoma B65 cells. Ethanol-extracted MCR was fractionated by n-hexane, butanol, and distilled water. Adult Sprague-Dawley rats were treated first with 20 μg of 6-OHDA, followed by three MCR extract fractions (100 or 200 mg·kg) for 14 consecutive days. In the behavioral rotation experiment, the MCR extract-treated groups showed significantly decreased number of net turns compared with the 6-OHDA control group. The three fractions also significantly inhibited the reduction in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta following 6-OHDA neurotoxicity. Western blotting analysis revealed significantly reduced tyrosine hydroxylase expression in the substantia nigra pars compacta in the 6-OHDA-treated group, which was significantly inhibited by the n-hexane or distilled water fractions of MCR. B65 cells were exposed to the extract fractions for 24 h prior to addition of 6-OHDA for 30 min; treatment with n-hexane or distilled water fractions of MCR reduced apoptotic cell death induced by 6-OHDA neurotoxicity and inhibited nitric oxide production and neuronal nitric oxide synthase expression. These results showed that n-hexane- and distilled water-fractioned MCR extracts inhibited 6-OHDA-induced neurotoxicity by suppressing nitric oxide production and neuronal nitric oxide synthase activity, suggesting that MCR extracts could serve as a novel candidate treatment for the patients with Parkinson's disease.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
therapeutic use
;
Antiparkinson Agents
;
pharmacology
;
therapeutic use
;
Cell Death
;
drug effects
;
Cell Line
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
Neurons
;
pathology
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type I
;
biosynthesis
;
Oxidopamine
;
toxicity
;
Paeonia
;
chemistry
;
Parkinsonian Disorders
;
chemically induced
;
drug therapy
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plants, Medicinal
;
Rats
;
Rats, Sprague-Dawley
;
Substantia Nigra
;
drug effects
;
enzymology
;
Tyrosine 3-Monooxygenase
;
genetics
;
metabolism
4.Calcium Receptor and Nitric Oxide Synthase Expression in Circular Muscle of Lower Esophagus from Patients with Achalasia.
Yang GAO ; Jun-Feng LIU ; Xin HE ; Xin-Bo LIU ; Ling-Ling ZHANG ; Lian-Mei ZHAO ; Chao ZHANG
Chinese Medical Journal 2018;131(23):2882-2885
Calcium Channels, L-Type
;
genetics
;
metabolism
;
Esophageal Achalasia
;
genetics
;
metabolism
;
Esophagus
;
metabolism
;
Humans
;
Nitric Oxide Synthase
;
metabolism
;
Nitric Oxide Synthase Type I
;
genetics
;
metabolism
;
RNA, Messenger
;
metabolism
;
Real-Time Polymerase Chain Reaction
;
Receptors, Calcium-Sensing
;
genetics
;
metabolism
5.Pancreatic kininogenase improves erectile function in streptozotocin-induced type 2 diabetic rats with erectile dysfunction.
Guo-Tao CHEN ; Bai-Bing YANG ; Jian-Huai CHEN ; Zheng ZHANG ; Lei-Lei ZHU ; He-Song JIANG ; Wen YU ; Yun CHEN ; Yu-Tian DAI
Asian Journal of Andrology 2018;20(5):448-453
Erectile dysfunction (ED) associated with type 2 diabetes is a severe problem that requires effective treatment. Pancreatic kininogenase (PK) has the potential to improve the erectile function of ED patients. This study aims to investigate the effect of PK on erectile function in streptozotocin-induced type 2 diabetic ED rats. To achieve this goal, we divided male Sprague-Dawley rats into five groups. One group was not treated, and the other four groups were treated with saline, sildenafil, PK or sildenafil, and PK, respectively, for 4 weeks after the induction of type 2 diabetic ED. Then, intracavernous pressure under cavernous nerve stimulation was measured, and penile tissue was collected for further study. Endothelial nitric oxide synthase levels, smooth muscle content, endothelium content, cyclic guanosine monophosphate (cGMP) levels in the corpus cavernosum, and neuronal nitric oxide synthase levels in the dorsal penile nerve were measured. Improved erectile function and endothelium and smooth muscle content in the corpus cavernosum were observed in diabetic ED rats. When treating diabetic ED rats with PK and sildenafil at the same time, a better therapeutic effect was achieved. These data demonstrate that intraperitoneal injection of PK can improve erectile function in a rat model of type 2 diabetic ED. With further research on specific mechanisms of erectile function improvement, PK may become a novel treatment for diabetic ED.
Animals
;
Cyclic GMP/metabolism*
;
Diabetes Mellitus, Experimental/physiopathology*
;
Erectile Dysfunction/physiopathology*
;
Kallikreins/therapeutic use*
;
Male
;
Muscle, Smooth, Vascular/physiopathology*
;
Nitric Oxide Synthase Type I/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Penile Erection/physiology*
;
Penis/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sildenafil Citrate/therapeutic use*
;
Treatment Outcome
;
Urological Agents/therapeutic use*
6.Immediate and delayed intracavernous injection of bone marrow mesenchymal stem cells to improve erectile function in rats with cavernous nerve injury.
Chao SUN ; Wei-Dong ZHU ; Jing LIU ; Hua JIANG ; Ming CHEN
National Journal of Andrology 2017;23(5):392-398
Objective:
To explore the effects of immediate and delayed intracavernous injection of bone marrow mesenchymal stem cells (BM-MSCs) on neurogenic erectile dysfunction (NED) induced by bilateral cavernous nerve injury in Sprague-Dawley (SD) rats.
METHODS:
BM-MSCs isolated from male SD rats were cultured and identified. Twenty-eight 8-week-old male SD rats were randomly divided into four groups, sham operation, NED model control, BM-MSCs immediate, and BM-MSCs delayed, and NED models were established in the latter three groups by crushing the bilateral cavernous nerves. The rats in the sham operation and model control groups were injected intracavernously with placebo while those in the latter two with BM-MSCs immediately or 2 weeks after modeling. At 12 weeks after operation, the penile function of the rats was assessed according to the penile intracavernous pressure (ICP), mean arterial pressure (MAP), and ICP/MAP ratio obtained from different groups of rats. Then, all the animals were sacrificed and the penile cavernosal tissue collected for histological analysis.
RESULTS:
At 12 weeks after modeling, both ICP and ICP/MAP were significantly increased in the BM-MSCs immediate and delayed groups as compared with those in the model control (P <0.05), and so were the ratio of smooth muscle to collagen (P <0.05) and the smooth muscle content in the corpus cavernosum (P <0.05), and the number of neurofilament (NF)-positive nerve fibers (P <0.05) and the expression of neuronal nitric oxide synthase (nNOS) in the dorsal nerves of the midshaft penis (P <0.05).
CONCLUSIONS
Intracavernous injection of BM-MSCs can improve erectile function in rats with bilateral cavernous nerve injury by elevating the smooth muscle-collagen ratio and smooth muscle content in the corpus cavernosum and thus preventing its fibrosis as well as by increasing the number of NF-positive nerve fibers and expression of nNOS in the penile dorsal nerves.
Animals
;
Disease Models, Animal
;
Erectile Dysfunction
;
enzymology
;
etiology
;
therapy
;
Male
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Muscle, Smooth
;
Nitric Oxide Synthase Type I
;
metabolism
;
Penile Erection
;
physiology
;
Penis
;
enzymology
;
innervation
;
Pudendal Nerve
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
7.Molecular mechanisms of androgens regulating the eNOS expression in rat corpus cavernosum.
Guo-Ping XIE ; Ji-Yi XIA ; Jun LIU ; Rui JIANG
National Journal of Andrology 2017;23(1):11-20
Objective:
To investigate whether androgens can regulate the expression of eNOS in rat corpus cavernosum through AKT3, PIK3CA, CALM, and CAV1 and influence erectile function.
METHODS:
Thirty-six 8-week-old male SD rats were randomly divided into groups A (4-week control), B (6-week control), C (4-week castration), D (6-week castration), E (4-week castration + testosterone replacement), and F (6-week castration + testosterone replacement). Both the testis and epididymis were removed from the rats in groups C, D, E and F, and on the second day after surgery, the animals of groups E and F were subcutaneously injected with testosterone propionate at 3 mg per kg of the body weight qd alt while all the others with isodose oil instead. At 4 weeks (for groups A, C and E) and 6 weeks (for groups B, D and F) after treatment, we detected the maximum intracavernous pressure (ICPmax), the mean carotid arterial pressure (MAP) and their ratio (ICPmax/MAP), measured the level of serum testosterone (T), and determined the expressions of eNOS, P-eNOS, AKT3, PIK3CA, CALM and CAV1 in the corpus cavernosum by Western blot and immunohistochemistry.
RESULTS:
No statistically significant differences were observed in the body weight and MAP among different groups. The serum T level and ICPmax/MAP were remarkably lower in groups C and D than in the other four groups (P<0.01) as well as in groups E and F than in A and B (P<0.05) but exhibited no significant differences either between E and F or between A and B. Immunohistochemistry showed that eNOS and P-eNOS were mainly expressed in the vascular endothelial cell membrane and cavernous vascular lumen, while AKT3, PIK3CA, CALM and CAV1 chiefly in the vascular endothelial cell cytoplasm and membrane, with a few in the smooth muscle cells. Western blot analysis manifested that the expressions of eNOS, P-eNOS, AKT3, PIK3CA, CALM and CAV1 were markedly lower in groups C and D than in A, B, E and F (P<0.01) as well as in D than in C (P<0.05) but those in groups E and F did not showed any significant difference from those in A and B, nor E from F or A from B.
CONCLUSIONS
Androgens can improve erectile function by upregulating the expressions of AKT3, PIK3CA, CALM and CAV1 protein molecules and activating eNOS after its phosphorylation, though the exact molecular mechanisms are yet to be further studied.
Animals
;
Blood Pressure
;
Blotting, Western
;
Caveolin 1
;
metabolism
;
Class I Phosphatidylinositol 3-Kinases
;
metabolism
;
Erectile Dysfunction
;
Hormone Replacement Therapy
;
Male
;
Monomeric Clathrin Assembly Proteins
;
metabolism
;
Myocytes, Smooth Muscle
;
Nitric Oxide Synthase Type III
;
metabolism
;
Orchiectomy
;
Penile Erection
;
physiology
;
Penis
;
enzymology
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Testosterone Propionate
;
administration & dosage
8.Expression of nNOS and ultrastructural changes in the penile tissue of rats with prolactinoma-induced erectile dysfunction.
Bo-wen WENG ; Si-chuan HOU ; Hai ZHU ; Luo XU ; Xiao LUAN ; Hai-yan QI ; Wei-min WANG ; Wei LIU ; Li-jiang SUN
National Journal of Andrology 2015;21(10):871-876
OBJECTIVETo study the expression of nNOS and ultrastructural changes in the penile tissue of rats with prolactinoma-induced erectile dysfunction (ED).
METHODSWe established the model of prolactinoma in 20 male Westar rats by peritoneal injection of diethylstilbestrol (DES) and treated the control rats with normal saline (n = 10) or sterilized arachis oil (n = 10). After 8 weeks, we performed the apomorphine test and measured the weight of the pituitary gland and the levels of serum prolactin (PRL) and testosterone (T) to confirm the successful construction of the prolactinoma-induced ED model. Then we determined the expression of nNOS in the penile tissue by immunohistochemistry and examined the ultrastructural changes of the penile cavernosum under the transmission electron microscope.
RESULTSThe prolactinoma-induced ED model was successfully established in 15 rats. The weight of the pituitary gland was significantly increased in the rats treated with DES as compared with the normal saline and sterilized arachis oil controls ([46.7 ± 15.5] vs [11.7 ± 2.4] and [12.4 ± 2.3] mg, both P < 0.05). The level of serum PRL was markedly higher while that of T remarkably lower in the former than in the latter two groups ([1,744.9 ± 304.5] vs [11.5 ± 2.4] and [10.6 ± 1.9] ng/ml, both P < 0.0l; [1.54 ± 0.46] vs [3.11 ± 1.08] and [3.04 ± 1.11] ng/ml, both P < 0.05). The rate of penile erection was significantly reduced in the prolactinoma-induced ED model rats in comparison with the normal saline and arachis oil controls (16.7% vs 100% and 87.5%, both P < 0.05), and so was the expression of nNOS in the penile tissue (0.024 ± 0.011 vs 0.066 ± 0.019 and 0.058 ± 0.021, both P < 0.05). Transmission electron microscopy manifested significant ultrastructural changes in the endothelial and smooth muscle cells of the cavernous tissue in the prolactinoma-induced ED models.
CONCLUSIONThe ultrastructural changes of the penile cavernous tissue and the reduced expression of nNOS in penile tissue may be the most important mechanisms of prolactinoma-induced ED in rats.
Animals ; Apomorphine ; Carcinogens ; Diethylstilbestrol ; Erectile Dysfunction ; etiology ; Humans ; Male ; Myocytes, Smooth Muscle ; ultrastructure ; Nitric Oxide Synthase Type I ; metabolism ; Organ Size ; Penile Erection ; Penis ; enzymology ; ultrastructure ; Pituitary Neoplasms ; chemically induced ; complications ; Prolactin ; blood ; Prolactinoma ; chemically induced ; complications ; Rats ; Rats, Wistar ; Testosterone ; blood
9.Effect of rapid eye movement sleep deprivation on anxiety behavior and hippocampus NO level: different responses of adolescent and adult C57BL/6J mice.
Xin-Yan HUANG ; Tian-Bin CHEN ; Yan-Li HAO ; Bin ZHANG
Journal of Southern Medical University 2015;35(10):1476-1480
OBJECTIVETo explore the difference between adolescent and adult C57BL/6J mice in response to rapid eye movement sleep (REMS) deprivation in terms of anxiety behavior and hippocampal NO level.
METHODSBoth adolescent and adult C57BL/6J mice were divided into normal control (NC) group, wide platform (WP) group, and 24-hour REMS deprivation group, each group consisting of 15 mice. REMS deprivation models were established using a small platform in water tank, and the elevated plus maze test was used to examine anxiety behavior of the mice. After behavioral tests, the mice were sacrificed to examine hippocampal NO levels using enzyme-linked immunosorbent assay, and hippocampal nNOS protein expression was detected with Western blotting.
RESULTSThe adolescent C57BL/6J mice showed no obvious differences in anxiety behaviors between the 3 groups, but NO level and nNOS expression in the hippocampus was significantly higher in REMSD group than in NC and WP groups (P<0.01). The adult mice in REMSD group, compared with those in the other two groups, exhibited significantly increased total number of arm entry (P<0.01), lowered number of open arm entry and reduced open arm time (P<0.01), increased number of close arm entry and prolonged close arm time (P<0.01 or 0.05); no obvious differences in NO level or nNOS expression in the hippocampus were found in the 3 groups of adult mice.
CONCLUSIONREMS deprivation produces different effects on anxiety-related behaviors between adolescent and adult mice possibly in relation to their different responses in terms of NO levels and nNOS expression in the hippocampus.
Animals ; Anxiety ; Hippocampus ; chemistry ; Mice ; Mice, Inbred C57BL ; Nitric Oxide ; chemistry ; Nitric Oxide Synthase Type I ; metabolism ; Sleep Deprivation ; Sleep, REM
10.Astragaloside IV regulates STAT1/IκB/NF-κB signaling pathway to inhibit activation of BV-2 cells.
Yi-xin HE ; Hai-lian SHI ; Hong-shuai LIU ; Hui WU ; Bei-bei ZHANG ; Xiao-jun WU ; Zheng-tao WANG
China Journal of Chinese Materia Medica 2015;40(1):124-128
OBJECTIVEThe study was aimed to investigate the inhibitory effect and mechanism of astragaloside IV (ASI) on the activation of microglial cells.
METHODAfter pre-incubated with ASI for 2 h, microglial cells BV-2 were stimulated with interferon-γ (IFN-γ) for 1. 5 h and 24 h, respectively. Secretion of nitric oxide (NO) in the medium was measured by Griess method. Production of tumor necrosis factor alpha (TNF-α) was detected by ELISA approach. Cellular gene expressions of CD11b, TNF-α, interleukin 1β (IL-1β) and induced nitric oxide synthase (iNOS) were examined by quantitative-PCR analysis. Total and phosphorylation of STAT1, IκB and NF-κB was analyzed by Western blot method.
RESULTASI could significantly inhibit the increased secretion of TNF-α and NO from BV-2 cells upon IFN-γ stimulation (P < 0.001). Further study showed that ASI significantly down-regulated gene expression of IL-1β and TNF-α (P < 0.01, P < 0.05) and exhibited a trend to reduce that of iNOS. IFN-γ and ASI have no obvious effect on gene expression of CD11b. Moreover, ASI inhibited the phosphorylation of STAT1, IκB and NF-κB elicited by IFN-γ stimulation.
CONCLUSIONASI could restrain microglial activation through interfering STAT1/IκB/NF-κB signaling pathway, reducing gene expres- sion of IL-1β and TNF-α, and thus inhibiting the production of proinflammatory mediators such as NO and TNF-α.
Animals ; Astragalus Plant ; chemistry ; Drugs, Chinese Herbal ; pharmacology ; I-kappa B Proteins ; genetics ; metabolism ; Interferon-gamma ; genetics ; metabolism ; Mice ; NF-kappa B ; genetics ; metabolism ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; STAT1 Transcription Factor ; genetics ; metabolism ; Saponins ; pharmacology ; Signal Transduction ; drug effects ; Triterpenes ; pharmacology

Result Analysis
Print
Save
E-mail