1.Chinese Medicine Regulates Ferroptosis to Treat Lung Cancer: A Review
Cheng LUO ; Yuanhang YE ; Bo NING ; Jia KE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):268-278
This article provides a systematic review of the research progress in the mechanisms related to lung cancer and ferroptosis, ferroptosis-related lung cancer biomarkers and gene mutation targets, and ferroptosis-targeted regulation of Chinese medicine in treating lung cancer in the past five years, providing a feasible and effective basis for the prevention and treatment of lung cancer with Chinese medicine and the development of new drugs. According to the available studies, ferroptosis is widely suppressed in lung cancer, while the specific regulatory mechanisms have not been fully elucidated. The suppression is related to lipid metabolism, iron metabolism, cystine/glutamate antiporter system Xc- (System Xc-)/glutathione (GSH)/glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate [NAD(P)H], long non-coding RNA (lncRNA), nuclear factor E2-related factor 2 (Nrf2), and p53. In modern times, traditional Chinese medicine is widely used in the comprehensive treatment of lung cancer, and it has gradually become a hot research topic due to its obvious advantages of anti-tumor activity, high efficacy, and low toxicity. Traditional Chinese medicine plays an important role in the treatment of lung cancer. Studies have shown that the active components, extracts, and prescriptions of Chinese medicine can induce ferroptosis in lung cancer cells through targeted regulation of iron metabolism, lipid metabolism, and p53, Nrf2, LncRNA, and GPX4 pathways to inhibit the growth and proliferation of lung cancer, thus exerting anti-tumor effects. Therefore, regulating ferroptosis is expected to become a new direction for preventing lung cancer. Basic research has shown that Chinese medicine can regulate ferroptosis via multiple targets and pathways in the treatment of lung cancer. At present, Chinese medicine demonstrates great research prospects in regulating ferroptosis to treat lung cancer, which, howeve, still faces challenges to achieve clinical transformation.
2.Key Information Research on Famous Classical Formula Shegan Mahuangtang
Cheng LUO ; Yuanhang YE ; Bo NING ; Fei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):180-188
Shegan Mahuangtang was a famous classical formula for treating asthma and is included in the the Catalogue of Ancient Famous Classical Formulas(The Second Batch). By means of bibliometrics, this study conducts a textual research and analysis on the key information of its formula origin, composition, drug origins, processing, dosage, decocting methods, efficacy, and clinical application. According to research, Shegan Mahuangtang was first recorded in Synopsis of the Golden Chamber and is the ancestral formula for treating cold asthma, which has been used to this day. Suggestions for the drug origins in Shegan Mahuangtang is as follows:Shegan is selected from the dried rhizomes of Belamcanda chinensis(Iridaceae), Mahuang is selected from the dried herbaceous stems of Ephedra sinica(Ephedraceae), Shengjiang is selected from the fresh rhizomes of Zingiber officinale(Zingiberaceae), Xixin is selected from the dried roots and rhizomes of Asarum heterotropoides var. mandshuricum, A. sieboldii var. seoulense or A. sieboldii(Aristolochiaceae), Ziwan is selected from the dried roots and rhizomes of Aster tataricus(Compositae), Kuandonghua is selected from the dried flower buds of Tussilago farfara(Compositae), Nanwuweizi is selected from the dried mature fruits of Schisandra sphenanthera(Magnoliaceae), Dazao is selected from the dried mature fruit of Ziziphus jujuba(Rhamnaceae), and Banxia, a plant of the Araceae family, is selected as the processed products of dried tubers from Pinellia ternata. The recommended dosage is 41.4 g of Shegan, Xixin, Ziwan and Kuandonghua, 55.2 g of Mahuang and Shengjiang, 37.5 g of Nanwuweizi, 21 g of Dazao, 34.5 g of Banxia. The decoction method is to boil Mahuang first in 2.4 L of water, remove the froth on the top, and add the rest of the herbs and decoct them together, and then boil them to 600 mL, and then take it at warm temperature, 200 mL each time, 3 times a day. In terms of clinical application, Shegan Mahuangtang is most commonly used for respiratory system diseases, especially in the treatment of adult or pediatric bronchial asthma and cough variant asthma. Phlegm sound in the throat is the core symptom of Shegan Mahuangtang in clinical practice, and the core pathogenesis is "cold fluid stagnated in the lungs". By excavating and sorting out the ancient and modern literature of Shegan Mahuangtang, key information is confirmed, which can provide literature reference for the modern clinical application and new drug development of this famous classical formula.
3.Relationship Between Severe Pneumonia and Signaling Pathways and Regulation by Chinese Medicine: A Review
Cheng LUO ; Bo NING ; Xinyue ZHANG ; Yuzhi HUO ; Xinhui WU ; Yuanhang YE ; Fei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):294-302
Severe pneumonia is one of the most common and critical respiratory diseases in clinical practice. It is characterized by rapid progression, difficult treatment, high mortality, and many complications, posing a significant threat to the life and health of patients. The pathogenesis of severe pneumonia is highly complex, and studies have shown that its occurrence and development are closely related to multiple signaling pathways. Currently, the treatment of severe pneumonia mainly focuses on anti-infection, mechanical ventilation, and glucocorticoids, but clinical outcomes are often not ideal. Therefore, finding safe and effective alternative therapies is particularly important. In recent years, with the deepening of research into traditional Chinese medicine (TCM), it has gained widespread attention in the treatment of severe pneumonia. This paper reviewed the relationship between severe pneumonia and relevant signaling pathways in recent years and how TCM regulated these pathways in the treatment of severe pneumonia. It was found that TCM could regulate the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), NOD-like receptor protein 3 (NLRP3), and nuclear factor E2-related factor 2 (Nrf2) signaling pathways, playing a role in reducing the inflammatory response, inhibiting cell apoptosis and pyroptosis, improving oxidative stress, and other effects in the treatment of severe pneumonia. Among these pathways, it was found that all of them regulated inflammation to treat severe pneumonia. Therefore, reducing inflammation is the core mechanism by which Chinese medicine treats severe pneumonia. This review provides direction for the clinical treatment of severe pneumonia and offers a scientific basis for the research and development of new drugs.
4.Association of habitual reading and writing postures with common diseases and comorbidities among children and adolescents in Ningxia
WEI Rong, LUO Haiyan, MA Ning, ZHAO Yu, YANG Yi, CHEN Yaogeng
Chinese Journal of School Health 2025;46(5):723-727
Objective:
To investigate the association between habitual reading/writing postures and the co-occurrence of common health conditions (overweight/obesity, visual impairment, hypertension, and scoliosis) and comorbidities among children and adolescents, in order to provide data support for the joint prevention of common diseases and comorbidities among children and adolescents.
Methods:
From September 2021 to June 2022, a multi-stage cluster random sampling method was used to select a total of 4 577 children and adolescents from 16 primary and secondary schools in Ningxia: Jinfeng District of Yinchuan City, Shapotou District of Zhongwei City, Yanchi County of Wuzhong City, and Pingluo County of Shizuishan City. A weighted complex sampling design was used to investigate the association of habitual reading and writing postures with common comorbidities in children and adolescents.
Results:
The prevalence rates of common diseases among children and adolescents in Ningxia were as follows: overweight/obesity was 22.87%, visual impairment was 62.52%, scoliosis was 2.30%, and hypertension was 1.30%. The prevalence of multimorbidity (co-occurrence of ≥2 conditions) among Ningxia children and adolescents was 15.95%. Multivariate unconditional Logistic regression analysis showed that frequent/always collapsing waist and sitting forward with head lowered increased the risk of common comorbidities in children and adolescents ( OR =1.90, P <0.05). Compared with the corresponding reference group, male children and adolescents aged 9 to 12 years and boys had relatively lower risks of overweight/obesity ( OR =0.71, 0.70); the risk of poor vision among children and adolescents aged 9 to 12 years, male, and urban was relatively low ( OR =0.59, 0.60, 0.73)( P < 0.05 ). Children and adolescents who often/always sat leaning to the left or right were at higher risk of poor vision ( OR =1.78); urban children and adolescents had a higher risk of developing scoliosis ( OR =3.71); children and adolescents aged 9 to 12 had a relatively low risk of developing hypertension ( OR =0.09), and children and adolescents who often/always bent their backs and sat forward on their knees had a higher risk of hypertension ( OR =5.03)( P <0.05).
Conclusions
Ningxia has a high incidence of common diseases and multiple diseases among children and adolescents, frequent or always collapsing waist and sitting forward with head lowered is associated with common comorbidities in children and adolescents in Ningxia. Proper postural measures for reading and writing should be carried out as soon as possible to encourage children and adolescents to develop good reading and writing habits for effectively preventing and controlling the occurrence of common diseases.
5.Interpretation of "Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases"
Shishi ZOU ; Ruyuan HE ; Guoqing LUO ; Ning LI ; Qing GENG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):953-957
Non-small cell lung cancer is one of the primary types of cancer that leads to brain metastases. Approximately 10% of patients with non-small cell lung cancer have brain metastases at the time of diagnosis, and 26%-53% of patients develop brain metastases during the progression of their disease. However, the underlying mechanisms of lung cancer brain metastasis have not been fully elucidated. With the continuous development of single-cell and spatial transcriptomics, the genomic and transcriptomic characteristics of lung cancer brain metastasis are gradually being revealed. In February 2025, the journal Nature Medicine published an article titled "Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases". This article aims to provide a brief interpretation of the paper for colleagues in research and clinical practice.
6.Effect of Angiopep-2-functionalized bacterial extracellular vesicles system on glioblastoma
Bo SUN ; Zongqiang LYU ; Ning LUO ; Rong LI ; Hongxiang WANG ; Juxiang CHEN
Journal of Pharmaceutical Practice and Service 2025;43(10):481-490
Objective To construct a targeted drug delivery system, Ang-BEVs@Dox, based on Angiopep-2 peptide-modified bacterial extracellular vesicles (BEVs) loaded with doxorubicin (Dox), overcome the challenges of blood-brain barrier (BBB) penetration and systemic toxicity in chemotherapy for glioblastoma (GBM), enhance drug targeting to brain tumors and reduce its toxic side effects. Methods BEVs derived from Escherichia coli were isolated using ultracentrifugation. The targeting ligand Angiopep-2, specific for the LRP-1 receptor, was conjugated onto the surface of BEVs to construct the targeted carrier (Ang-BEVs). Dox was loaded into Ang-BEVs using low-frequency sonication to form Ang-BEVs@Dox. The physicochemical properties (morphology and size) of the carriers were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The BBB-penetrating capability, in vitro/in vivo anti-tumor efficacy, and biosafety of the system were evaluated using cellular uptake assays, 3D tumor spheroid models, and orthotopic tumor-bearing mouse models. Results ① Carrier characterization and in vitro efficacy: Ang-BEVs@Dox exhibited a particle size of approximately 100 nm and maintained structural stability after Dox loading. It significantly enhanced cellular uptake efficiency in U87MG cells and achieved deep penetration within 3D tumor spheroids. Cytotoxicity assays demonstrated synergistic anti-tumor effects between the BEVs and Dox in the Ang-BEVs@Dox system. ② In vivo targeting and anti-tumor efficacy: In orthotopic tumor-bearing mouse models, Ang-BEVs@Dox effectively penetrated the BBB and significantly inhibited tumor growth, extending the median survival time of tumor-bearing mice to 33.5 days (compared to 23.5 days in the blank control group, P<0.001). Immunohistochemical analysis revealed significant suppression of the tumor cell proliferation marker Ki-67 and enhancement of the apoptosis marker TUNEL staining signals. ③ Biosafety: Major organs from mice in the Ang-BEVs@Dox treatment group showed no observable pathological damage, indicating good biosafety. Conclusion This study successfully constructed an Angiopep-2 peptide-modified engineered BEVs delivery system (Ang-BEVs@Dox). Through Angiopep-2-mediated BBB penetration and tumor targeting, it significantly enhanced the accumulation and therapeutic efficacy of BEVs at the GBM site. This method combined efficient delivery, low systemic toxicity, and clinical translation potential, which provided an innovative solution to overcome the therapeutic bottleneck in GBM treatment.
7.Learning Curve for Using Endoscopic Saphenous Vein Harvesting in Coronary Artery Bypass Grafting
Weihua ZHANG ; Jian ZHANG ; Xiaoke SUN ; Hong LUO ; Ning MA ; Donghai LIU ; Xin ZHANG ; Chenhui QIAO
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(2):319-323
ObjectiveTo investigate the application of endoscopy in obtaining the great saphenous vein (GSV) during coronary artery bypass grafting (CABG) and explore the learning curve, with a particular focus on common challenges encountered during the learning process and their impact on early clinical outcomes. MethodsA retrospective analysis was conducted on clinical data from 83 patients who underwent off-pump CABG with endoscopic GSV harvesting at the First Affiliated Hospital of Zhengzhou University from July 2013 to April 2014. Patients were categorized into four groups based on the chronological order of their hospitalization: Group A (novice group, n=20), Group B (proficient group, n=20), Group C (progressive group, n=20), and Group D (mature group, n=23). Differences in perioperative and midterm follow-up outcomes among the groups were analyzed to determine the learning curve period. ResultsThe study population had a mean age of (60.22±8.06) years and a mean body weight of (69.77±11.66) kg. Comorbidities included hypertension (24 cases), diabetes (26 cases), and subacute cerebral infarction (14 cases). The novice group exhibited significantly shorter GSV length-to-harvest time ratio relative to the other three groups (P<0.001) and a significantly higher incidence of main vein damage (P=0.006). However, there was no statistically significant difference in graft patency at the 1-year follow-up. ConclusionThorough and reliable technical training in endoscopic GSV harvesting is essential to minimize vascular injury caused by novice operators. Approximately 20 cases of hands-on experience and a careful self-analysis of procedural challenges are likely required to achieve proficiency in GSV harvesting.
8.Influencing factors for microvascular invasion in hepatocellular carcinoma and construction of nomogram model based on three-dimensional visualization
Guanbin LUO ; Chiyu CAI ; Lianyuan TAO ; Dongxiao LI ; Zhuangzhuang YAN ; Yanbo WANG ; Liancai WANG ; Zejun WEN ; Peigang NING ; Deyu LI
Chinese Journal of Digestive Surgery 2024;23(2):280-288
Objective:To investigate the influencing factors for microvascular invasion (MVI) in hepatocellular carcinoma based on three-dimensional visualization and the construction of its nomogram model.Methods:The retrospective cohort study method was conducted. The clinico-pathological data of 190 patients with hepatocellular carcinoma who were admitted to Henan University People′s Hospital from May 2018 to May 2021 were collected. There were 148 males and 42 females, aged (58±12)years. The 190 patients were randomly divided into the training set of 133 cases and the validation set of 57 cases by the method of random number table in the ratio of 7:3. The abdominal three-dimensional visualization system was used to characterize the tumor morphology and other imaging features. Observation indicators: (1) analysis of influencing factors for MVI in hepatocellular carcinoma; (2) construction and evaluation of nomogram model of MVI in hepatocellular carcinoma. Measurement data with normal distribution were expressed as Mean± SD, and independent sample t test was used for comparison between groups. Measurement data with skewed distribution were expressed as M( Q1, Q3), and non-parametric rank sum test was used for comparison between groups. Count data were expressed as absolute numbers, and the chi-square test was used for comparison between groups. Corresponding statistical methods were used for univariate analysis. Binary Logistic regression model was used for multivariate analysis. Receiver operator characteristic (ROC) curves were plotted, and the nomogram model was assessed by area under the curve (AUC), calibration curve, and decision curve. Results:(1) Analysis of influencing factors for MVI in hepatocellular carcinoma. Among 190 patients with hepatocellular carcinoma, there were 97 cases of positive MVI (including 63 cases in the training set and 34 cases in the validation set) and 93 cases of negative MVI (including 70 cases in the training set and 23 cases in the validation set). Results of multivariate analysis showed that alpha-fetoprotein, vascular endothelial growth factor, tumor volume, the number of tumors, and tumor morphology were independent factors affecting the MVI of patients with hepatocellular carcinoma ( odds ratio=5.06, 3.62, 1.00, 2.02, 2.59, 95% confidence interval as 1.61-15.90, 1.28-10.20, 1.00-1.01, 1.02-3.98, 1.03-6.52, P<0.05). (2) Construction and evaluation of nomogram model of MVI in hepatocellular carcinoma. The results of multivariate analysis were incorporated to construct a nomogram prediction model for MVI of hepatocellular carcinoma. ROC curves showed that the AUC of the training set of nomogram model was 0.85 (95% confidence interval as 0.79-0.92), the optimal fractional cutoff based on the Jordon′s index was 0.51, the sensitivity was 0.71, and the specificity was 0.84. The above indicators of validation set were 0.92 (95% confidence interval as 0.85-0.99), 0.50, 0.90, and 0.82, respectively. The higher total score of the training set suggested a higher risk of MVI in hepatocellular carcinoma. The calibration curves of both training and validation sets of nomogram model fitted well with the standard curves and have a high degree of calibration. The decision curve showed a high net gain of nomogram model. Conclusions:Alpha-fetoprotein, vascular endothelial growth factor, tumor volume, the number of tumors, and tumor morphology are independent influencing factors for MVI in patients with hepatocellular carcinoma. A nomogram model constructed based on three-dimensional visualized imaging features can predict MVI in hepatocellular carcinoma.
9.Effect of carbonic anhydrase 9 on hypoxia-induced proliferation of retinal microvascular endothelial cells in preterm fetus
Xianqiong LUO ; Wanwan FAN ; Ning WANG ; Juan CHEN ; Jian MA
Chinese Journal of Neonatology 2024;39(1):38-44
Objective:We applied a hypoxia-induced model of human fetal retinal microvascular endothelial cell (RMEC) to study the effect of carbonic anhydrase 9 (CA9) on cell proliferation.Methods:The eyeballs of spontaneously aborted fetuses in Guangdong Women and Children's Hospital were obtained, and the retinas were isolated. RMEC was obtained by trypsin and collagenase two-step enzyme digestion, and endothelial cells were identified by CD34. The fetal RMEC and the purchased adult RMEC were cultured in normoxic and hypoxic incubators (1%O 2+5%CO 2+94%N 2), and the expression of CA9 was detected by qPCR and Western blot. After knocking down the CA9 by small interference RNA technique, the cell proliferation was detected by CCK-8 method, and the cell viability was detected by CCK-8 after adding CA9 inhibitor U-104. Results:The primary RMEC was extracted successfully. Immunofluorescence staining showed the percentage of CD34 positive cells in the third-generation cells was nearly 100%. The expression of CA9 mRNA in immature fetus and adult RMEC under hypoxia culture was higher than that under normoxic culture (fetal 1% O 2 group vs. fetal 21% O 2 group: 67.80±10.31 vs. 1.00±0.04, P<0.001; adult 1% O 2 group vs. adult 21% O 2 group: 1.72±0.22 vs. 1.00±0.02, P=0.014). Western blot analysis showed significantly increased expression of CA9 in the fetal RMEC exposed to hypoxia, which aligned with the expression of CA9 mRNA. When fetal RMEC was transfected with siCA9 20 nM, the knockdown rate of CA9 was 95% ( P<0.001). CCK-8 assay showed significantly lower proliferation of fetal RMEC cells in siCA9 group compared to siNC group (0.57±0.05 vs. 0.90±0.03, P<0.001), which was reflected by the OD value. With the addition of 100 μM CA9 inhibitor U-104, the viability of fetal RMEC in the treated groupwas significantly lower than that in the untreated group (99.16%±3.82% vs. 119.10% ±1.72%, P=0.002). Conclusions:The expression of CA9 differed between adult and preterm fetus in our hypoxia-induced RMEC model. Inhibiting CA9 can inhibit the proliferation of retinal microvascular endothelial cells of preterm fetus.
10.Protective effect of Qingjie Huagong decoction on pancreatic tissue of mice with severe acute pancreatitis by regulating the NOD-like receptor protein 3/Toll-like receptor 4/nuclear factor-kappa B signaling pathway
Minchao FENG ; Baijun QIN ; Fang LUO ; Kai LI ; Ning WANG ; Guozhong CHEN ; Xiping TANG
Journal of Clinical Hepatology 2024;40(2):343-350
ObjectiveTo investigate the therapeutic effect of Qingjie Huagong decoction (QJHGD) on a mouse model of severe acute pancreatitis (SAP) and the mechanism of action of QJHGD against inflammatory response. MethodsA total of 36 male C57BL/6J mice were randomly divided into blank group, model group, Western medicine group (ulinastatin), and low-, middle-, and high-dose QJHGD groups, with 6 mice in each group. All mice except those in the blank group were given 5% sodium taurocholate by retrograde pancreaticobiliary injection to establish a model of SAP. After modeling, the mice in the low-, middle-, and high-dose groups were given QJHGD (1, 2, and 4 g/kg, respectively) by gavage, and those in the Western medicine group were given intraperitoneal injection of ulinastatin (5×104 U/kg), for 7 days in total. HE staining was used to observe the histopathological changes of the pancreas; ELISA was used to measure the levels of α-amylase, lipase, interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) in mice; RT-qPCR was used to measure the mRNA expression levels of NOD-like receptor protein3 (NLRP3), Toll-like receptor 4 (TLR4), and nuclear factor-kappa B (NF-κB) in pancreatic tissue; immunohistochemistry was used to measure the positive expression rates of NLRP3, TLR4, and NF-κB in pancreatic tissue; Western blot was used to measure the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6. An analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the blank group, the model group had diffuse destruction of pancreatic tissue structure, focal dilatation of pancreatic lobular septum, pancreatic acinar atrophy, and massive inflammatory cell infiltration, as well as significant increases in the content of α-amylase, lipase, IL-1β, IL-6, IL-8, IL-18, and TNF-α (all P<0.05), the mRNA expression levels and positive expression rates of NLRP3, TLR4, and NF-κB (all P<0.05), and the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6 (all P<0.05). Compared with the model group, the low-, middle-, and high-dose QJHGD groups and the Western medicine group had slightly tighter and more intact structure of pancreatic tissue, ordered arrangement of pancreatic acinar cells, a small amount of inflammatory cell infiltration, and hemorrhagic foci of pancreatic lobules, as well as significant reductions in the content of α-amylase, lipase, IL-1β, IL-6, IL-8, IL-18, and TNF-α (all P<0.05), the mRNA expression levels and positive expression rates of NLRP3, TLR4, and NF-κB (all P<0.05), and the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6 (all P<0.05). ConclusionQJHGD may exert a protective effect on the pancreatic tissue of SAP mice by inhibiting the activation of NLRP3/TLR4/NF-κB signaling pathway-related proteins, reducing the release of inflammatory mediators, and preventing the enhancement of inflammatory cascade response.


Result Analysis
Print
Save
E-mail