1.Application of central composite experimental design for the formulation and optimization of meropenem loaded chitosan-alginate nanoparticles
Clinton B. Gomez ; Jan Vonrich M. Huna ; Merrene Bright D. Judan ; Carl Edward F. Pahuyo
Philippine Journal of Health Research and Development 2024;28(1):32-36
Background:
Response surface methodology (RSM) is a cost-effective multivariate technique employed in optimization of pharmaceutical formulations. Central composite experiment design is one of the common designs under RSM used for determining optimum nanoparticle formulation parameters.
Objectives:
To optimize a formulation for meropenem-loaded chitosan alginate nanoparticles using central composite experimental design.
Methodology:
Meropenem loaded chitosan-alginate nanoparticles were fabricated using aqueous sodium alginate solution and ionotropic gelation with calcium chloride and chitosan, using an optimized formulation derived from a central composite design. The fabricated Mer-CS/Alg NPs were characterized for their particle size, zeta potential, encapsulation efficiency, and loading capacity. The central composite design has been used to adequately assess the influence of two factors namely meropenem concentration and Alg/CS mass ratio on the responses based on a limited number of 13 triplicate formulation runs.
Results:
This study successfully formulated meropenem-loaded chitosan/alginate nanoparticles. The optimal formulation of the Mer- CS/Alg NPs was 1.7 mg/mLcurcumin, and a Alg/CS mass ratio of 9.8:1. Based on the predicted values of the response variable, the optimal formulation would have a particle size of 490.64 nm, zeta potential of -28.59 mVand a loading capacity of 76.89%.
Conclusion
The central composite experimental design successfully optimized the nanoparticle formulation of meropenem and chitosan/alginate polymer solution. The optimum formulation produced nanoparticles with adequate size, high stability, and high drug load.
Meropenem
;
Nanoparticles
;
Research Design
2.Preparation of Mycobacterium tuberculosis EsxV lipid nanoparticles subunit vaccine and its immunological characteristics.
Lu BAI ; Yanzhi LU ; Huanhuan NING ; Yali KANG ; Yanling XIE ; Jian KANG ; Xue LI ; Ruonan CUI ; Yin WEI ; Yueqin LIU ; Yinlan BAI
Chinese Journal of Biotechnology 2023;39(10):4085-4097
To prepare a lipid nanoparticle (LNP)-based subunit vaccine of Mycobacterium tuberculosis (Mtb) antigen EsxV and study its immunological characteristics, the LNP containing EsxV and c-di-AMP (EsxV: C: L) was prepared by thin film dispersion method, and its encapsulation rate, LNP morphology, particle size, surface charge and polyphase dispersion index were measured. BALB/c mice were immunized with EsxV: C: L by nasal drops. The levels of serum and mucosal antibodies, transcription and secretion of cytokines in lung and spleen, and the proportion of T cell subsets were detected after immunization. EsxV: C: L LNPs were obtained with uniform size and they were spherical and negatively charged. Compared with EsxV: C immunization, EsxV: C: L mucosal inoculation induced increased sIgA level in respiratory tract mucosa. Levels of IL-2 secreted from spleen and ratios of memory T cells and tissue-resident T cells in mice were also elevated. In conclusion, EsxV: C: L could induce stronger mucosal immunity and memory T cell immune responses, which may provide better protection against Mtb infection.
Animals
;
Mice
;
Mycobacterium tuberculosis
;
Antigens, Bacterial
;
Immunization
;
Nanoparticles
;
Vaccines, Subunit
;
Mice, Inbred BALB C
3.Silver nanoparticles-resistance of HeLa cell associated with its unusually high concentration of α-ketoglutarate and glutathione.
Heming CHEN ; Yujing HE ; Xueqing CHEN ; Fuchang DENG ; Zhisong LU ; Yingshuai LIU ; Huamao DU
Chinese Journal of Biotechnology 2023;39(10):4189-4203
Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.
Humans
;
Animals
;
Mice
;
HeLa Cells
;
Silver/pharmacology*
;
Ketoglutaric Acids/pharmacology*
;
Metal Nanoparticles
;
Anti-Bacterial Agents/pharmacology*
;
Glutathione
;
Microbial Sensitivity Tests
4.Stapled anoplin peptide combined with photothermal therapy enhances oncolytic immunotherapy of triple-negative breast cancer.
Wei-Dong GAO ; Xiao-Xia LIU ; Ting YANG ; Jia-Yi LIN ; Yu-Xuan SONG ; Sheng-Xin LU ; Xiao-Kun ZHANG ; Ye WU ; Xin LUAN ; Wei-Dong ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4981-4992
This study constructed a nano-drug delivery system, A3@GMH, by co-delivering the stapled anoplin peptide(Ano-3, A3) with the light-harvesting material graphene oxide(GO), and evaluated its oncolytic immunotherapy effect on triple-negative breast cancer(TNBC). A3@GMH was prepared using an emulsion template method and its physicochemical properties were characterized. The in vivo and in vitro photothermal conversion abilities of A3@GMH were investigated using an infrared thermal imager. The oncoly-tic activity of A3@GMH against TNBC 4T1 cells was evaluated through cell counting kit-8(CCK-8), lactate dehydrogenase(LDH) release, live/dead cell staining, and super-resolution microscopy. The targeting properties of A3@GMH on 4T1 cells were assessed using a high-content imaging system and flow cytometry. In vitro and in vivo studies were conducted to investigate the antitumor mechanism of A3@GMH in combination with photothermal therapy(PTT) through inducing immunogenic cell death(ICD) in 4T1 cells. The results showed that the prepared A3@GMH exhibited distinct mesoporous and coated structures with an average particle size of(308.9±7.5) nm and a surface potential of(-6.79±0.58) mV. The encapsulation efficiency and drug loading of A3 were 23.9%±0.6% and 20.5%±0.5%, respectively. A3@GMH demonstrated excellent photothermal conversion ability and biological safety. A3@GMH actively mediated oncolytic features such as 4T1 cell lysis and LDH release, as well as ICD effects, and showed enhanced in vitro antitumor activity when combined with PTT. In vivo, A3@GMH efficiently induced ICD effects with two rounds of PTT, activated the host's antitumor immune response, and effectively suppressed tumor growth in 4T1 tumor-bearing mice, achieving an 88.9% tumor inhibition rate with no apparent toxic side effects. This study suggests that the combination of stapled anoplin peptide and PTT significantly enhances the oncolytic immunotherapy for TNBC and provides a basis for the innovative application of anti-tumor peptides derived from TCM in TNBC treatment.
Humans
;
Animals
;
Mice
;
Photothermal Therapy
;
Triple Negative Breast Neoplasms/pathology*
;
Antimicrobial Cationic Peptides
;
Immunotherapy/methods*
;
Cell Line, Tumor
;
Phototherapy/methods*
;
Nanoparticles/chemistry*
5.Preparation of vitexin albumin nanoparticles and its pharmacokinetic study.
Xue ZHANG ; Qiang WANG ; Jian-Quan PAN ; Si-Wei WANG ; Cheng-Yuan WU ; Yun-Na CHEN ; Feng-Ling WANG ; Lei WANG ; Wei-Dong CHEN
China Journal of Chinese Materia Medica 2023;48(19):5205-5215
This study aims to prepare vitexin albumin nanoparticles(VT-BSA-NPs) to alleviate the low bioavailability of vitexin(VT) in vivo due to its poor water solubility. VT micro powders were prepared by the antisolvent crystallization method, and the morphology, size, and physicochemical properties of VT micro powders were studied. The results showed that the VT micro powder had a particle size of(187.13±7.15) nm, an approximate spherical morphology, and a uniform size distribution. Compared with VT, the chemical structure of VT micro powders has not changed. VT-BSA-NPs were prepared from VT micro powders by desolvation-crosslinking curing method. The preparation process was screened by single factor test and orthogonal test, and the quality evaluation of the optimal prescription particle size, PDI, Zeta potential, EE, and morphology was performed. The results showed that the average particle size of VT-BSA-NPs was(124.33±0.47) nm; the PDI was 0.184±0.012; the Zeta potential was(-48.83±2.20) mV, and the encapsulation rate was 83.43%±0.39%, all of which met the formulation-related requirements. The morphological results showed that the VT-BSA-NPs were approximately spherical in appearance, regular in shape, and without adhesion on the surface. In vitro release results showed a significantly reduced release rate of VT-BSA-NPs compared with VT, indicating a good sustained release effect. LC-MS/MS was used to establish an analytical method for in vivo analysis of VT and study the plasma pharmacokinetics of VT-BSA-NPs in rats. The results showed that the specificity of the analytical method was good, and the extraction recovery was more than 90%. Compared with VT and VT micro powders, VT-BSA-NPs could significantly increase AUC, MRT, and t_(1/2), which was beneficial to improve the bioavailability of VT.
Rats
;
Animals
;
Serum Albumin, Bovine/chemistry*
;
Chromatography, Liquid
;
Tandem Mass Spectrometry
;
Nanoparticles/chemistry*
;
Particle Size
;
Drug Carriers/chemistry*
6.Research progress on plant-derived exosome-like nanoparticles and their applications.
Lin-Si PAN ; Wen-Cai WANG ; Meng-Yu YAO ; Xiao-Yan WANG ; Xian-Zhi ZHANG
China Journal of Chinese Materia Medica 2023;48(22):5977-5984
Plant-derived exosome-like nanoparticles(PELNs) are a class of membranous vesicles with diameters approximately ranging from 30 to 300 nm, isolated from plant tissues. They contain components such as proteins, lipids, and nucleic acids. PELNs play an important role in the metabolism of plant substances and immune defense, and can also cross-regulate the physiological activities of fungi and animal cells, showing significant potential applications. In recent years, research on PELNs has significantly increased, highlighting three main issues:(1) the mixed sources of plant materials for PELNs;(2) the lack of a unified system for isolating and characterizing PELNs;(3) the urgent need to elucidate the molecular mechanisms underlying the cross-regulation of biological functions by PELNs. This article focused on these concerns. It began by summarizing the biological origin and composition of PELNs, discussing the techniques for isolating and characterizing PELNs, and analyzing their biomedical applications and potential future research directions., aiming to promote the establishment of standardized research protocols for PELNs and provide theoretical references for in-depth exploration of the mechanisms underlying PELNs' cross-regulatory effects.
Animals
;
Exosomes/metabolism*
;
Proteins/metabolism*
;
Plants/metabolism*
;
Nucleic Acids
;
Nanoparticles
7.Droplet freeze-thawing system based on solid surface vitrification and laser rewarming.
Wenxin ZHU ; Ping'an PAN ; Yonghua HUANG ; Wei CHEN ; Sha HAN ; Zheng LI ; Jinsheng CHENG
Journal of Biomedical Engineering 2023;40(5):973-981
Ultra-rapid cooling and rewarming rate is a critical technical approach to achieve ice-free cells during the freezing and melting process. A set of ultra-rapid solid surface freeze-thaw visualization system was developed based on a sapphire flim, and experiments on droplet freeze-thaw were carried out under different cryoprotectant components, volumes and laser energies. The results showed that the cooling rate of 1 μL mixed cryoprotectant [1.5 mol/L propylene glycol (PG) + 1.5 mol/L ethylene glycol (EG) + 0.5 mol/L trehalose (TRE)] could be 9.2×10 3 °C/min. The volume range of 1-8 μL droplets could be vitrified. After comparing the proportions of multiple cryoprotectants, the combination of equal proportion mixed permeability protectant and trehalose had the best vitrification freezing effect and more uniform crystallization characteristics. During the rewarming operation, the heating curve of glassy droplets containing gold nanoparticles was measured for the first time under the action of 400-1 200 W laser power, and the rewarming rate was up to the order of 10 6 °C/min. According to the droplet images of different power rewarming processes, the laser power range for ice-free rewarming with micron-level resolution was clarified to be 1 400-1 600 W. The work of this paper simultaneously realizes the ultra-high-speed temperature ramp-up, transient visual observation and temperature measurement of droplets, providing technical means for judging the ice free droplets during the freeze-thaw process. It is conducive to promoting the development of ultra-rapid freeze-thaw technology for biological cells and tissues.
Freezing
;
Vitrification
;
Cryopreservation/methods*
;
Trehalose
;
Gold
;
Rewarming
;
Metal Nanoparticles
;
Cryoprotective Agents
;
Lasers
8.Research progress of new multifunctional bone cement in bone tumor therapy.
Ruilong SUN ; Yunfei LI ; Yongzheng TIAN ; Bo FAN
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(11):1444-1450
OBJECTIVE:
The research progress of new multifunctional bone cement in bone tumor therapy in recent years was reviewed, in order to provide help for the future research of anti-tumor bone cement.
METHODS:
The related literature on the treatment of bone tumors with new multifunctional bone cement at home and abroad in recent years was extensively reviewed and summarized.
RESULTS:
The new multifunctional bone cements include those with the functions of photothermotherapy, magnetic thermotherapy, chemoradiotherapy, and antibacterial after operation, which are discussed from the aspects of anti-tumor, drug controlled release, and cytotoxicity. Controlled drug release has been achieved in multifunctional bone cements by adjusting heat and pH or incorporating particles such as chitosan oligosaccharides and γ-cyclodextrin. At present, multifunctional bone cement with hyperthermia, radiotherapy, and chemotherapy has effectively inhibited the local recurrence and distant metastasis of bone tumors. Broadening the application of bone cement for photothermal and magnetic thermal therapy to deeper bone tumors, investigating more precise controlled release of drug-loaded bone cement, and introducing nanoparticles with both thermal conversion and intrinsic enzymatic activities into bone cement for synergistic anti-tumor therapy are promising research directions.
CONCLUSION
The new multifunctional bone cement inhibits bone tumor cells, promotes new bone formation in bone defects, and prevents incision infection after tumor resection. Certain progress has been made in anti-tumor, antibacterial, drug-controlled release, and reduction of cytotoxicity. Expanding the deeper application range of the new multifunctional bone cement, verifying the safety in clinical application, and focusing on the individualized treatment of the new multifunctional bone cement are the problems that need to be solved in the future.
Humans
;
Bone Cements/therapeutic use*
;
Delayed-Action Preparations
;
Bone Neoplasms/therapy*
;
Anti-Bacterial Agents/therapeutic use*
;
Nanoparticles/therapeutic use*
9.Research progress in mRNA drug modification and delivery systems.
Journal of Zhejiang University. Medical sciences 2023;52(4):439-450
Messenger RNA (mRNA) has shown tremendous potential in disease prevention and therapy. The clinical application requires mRNA with enhanced stability and high translation efficiency, ensuring it not to be degraded by nucleases and targeting to specific tissues and cells. mRNA immunogenicity can be reduced by nucleotide modification, and translation efficiency can be enhanced by codon optimization. The 5´ capping structure and 3´ poly A increase mRNA stability, and the addition of 5' and 3' non-translational regions regulate mRNA translation initiation and protein production. Nanoparticle delivery system protects mRNA from degradation by ubiquitous nucleases, enhances mRNA concentration in circulation and assists it cytoplasmic entrance for the purpose of treatment and prevention. Here, we review the recent advances of mRNA technology, discuss the methods and principles to enhance mRNA stability and translation efficiency; summarize the requirements involved in designing mRNA delivery systems with the potential for industrial translation and biomedical application. Furthermore, we provide insights into future directions of mRNA therapeutics to meet the needs for personalized precision medicine.
RNA, Messenger/genetics*
;
Cytoplasm
;
Nanoparticles
;
Precision Medicine
10.Advances in macrophage-targeting nanoparticles for the diagnosis and treatment of inflammatory bowel disease.
Journal of Zhejiang University. Medical sciences 2023;52(6):785-794
The pathogenesis of inflammatory bowel disease (IBD) is not fully elucidated. However, it has been considered that inflammatory macrophages may be involved in the imbalance of the intestinal mucosal immunity to regulate several signaling pathways, leading to IBD progression. The ratio of M1 to M2 subtypes of activated macrophages tends to increase in the inflamed intestinal section. There are challenges in the diagnosis and treatment of IBD, such as unsatisfactory specificity of imaging findings, low drug accumulation in the intestinal lesions, unstable therapeutic efficacy, and drug-related systemic toxicity. Recently developed nanoparticles may provide a new approach for the diagnosis and treatment of IBD. Nanoparticles targeted to macrophages can be used as contrast agents to improve the imaging quality or used as a drug delivery vector to increase the therapeutic efficiency of IBD. This article reviews the research progress on macrophage-targeting nanoparticles for the diagnosis and treatment of IBD to provide a reference for further research and clinical application.
Humans
;
Inflammatory Bowel Diseases/therapy*
;
Intestines
;
Macrophages/metabolism*
;
Intestinal Mucosa/pathology*
;
Nanoparticles


Result Analysis
Print
Save
E-mail