1.Neuroprotective effect of ginsenoside Re on drosophila model of Parkinson's disease.
Yan XU ; Xue MENG ; Wen-Xue ZHAO ; Dong-Guang LIU ; Jian-Guo ZHU ; Ru YAO ; Jing-Chun YAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1927-1935
		                        		
		                        			
		                        			This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Reactive Oxygen Species/metabolism*
		                        			;
		                        		
		                        			Antioxidants/pharmacology*
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Caspase 3/metabolism*
		                        			;
		                        		
		                        			Parkinson Disease/genetics*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/metabolism*
		                        			;
		                        		
		                        			Neuroprotective Agents/pharmacology*
		                        			;
		                        		
		                        			Kelch-Like ECH-Associated Protein 1/metabolism*
		                        			;
		                        		
		                        			Drosophila/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2/metabolism*
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			;
		                        		
		                        			Adenosine Triphosphate/pharmacology*
		                        			
		                        		
		                        	
2.Neuroprotective effect of tetramethylpyrazine on mice after spinal cord injury.
Shu-Jun LI ; Guo-Dong QI ; Wei QI ; Zhu-Xin YANG ; Zhi-Juan YU ; Qiong JIANG
China Journal of Chinese Materia Medica 2023;48(14):3848-3854
		                        		
		                        			
		                        			This study aims to investigate the neuroprotective effect of tetramethylpyrazine on mice after spinal cord injury and its mechanism. Seventy-five female C57BL/6 mice were randomly divided into 5 groups, namely, a sham operation group, a model group, a tetramethylpyrazine low-dose group(25 mg·kg~(-1)), a tetramethylpyrazine medium-dose group(50 mg·kg~(-1)), and a tetramethylpyrazine high-dose group(100 mg·kg~(-1)), with 15 mice in each group. Modified Rivlin method was used to establish the mouse model of acute spinal cord injury. After 14 d of tetramethylpyrazine intervention, the motor function of hind limbs of mice was evaluated by basso mouse scale(BMS) and inclined plate test. The levels of inflammatory cytokines tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β) in the spinal cord homogenate were determined by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe the histology of the spinal cord, and Nissl's staining was used to observe the changes in the number of neurons. Western blot and immunofluorescence method were used to detect the expression of glial fibrillary acidic protein(GFAP) and C3 protein. Tetramethylpyrazine significantly improved the motor function of the hind limbs of mice after spinal cord injury, and the BMS score and inclined plate test score of the tetramethylpyrazine high-dose group were significantly higher than those of the model group(P<0.01). The levels of TNF-α, IL-6, and IL-1β in spinal cord homogenate of the tetramethylpyrazine high-dose group were significantly decreased(P<0.01). After tetramethylpyrazine treatment, the spinal cord morphology recovered, the number of Nissl bodies increased obviously with regular shape, and the loss of neurons decreased. As compared with the model group, the expression of GFAP and C3 protein was significantly decreased(P<0.05,P<0.01) in tetramethylpyrazine high-dose group. In conclusion, tetramethylpyrazine can promote the improvement of motor function and play a neuroprotective role in mice after spinal cord injury, and its mechanism may be related to inhibiting inflammatory response and improving the hyperplasia of glial scar.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Neuroprotective Agents/pharmacology*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Spinal Cord Injuries/genetics*
		                        			;
		                        		
		                        			Spinal Cord/metabolism*
		                        			
		                        		
		                        	
3.Neuroprotective potential of cannabidiol: Molecular mechanisms and clinical implications.
Srushti M TAMBE ; Suraj MALI ; Purnima D AMIN ; Mozaniel OLIVEIRA
Journal of Integrative Medicine 2023;21(3):236-244
		                        		
		                        			
		                        			Cannabidiol (CBD), a nonpsychotropic phytocannabinoid that was once largely disregarded, is currently the subject of significant medicinal study. CBD is found in Cannabis sativa, and has a myriad of neuropharmacological impacts on the central nervous system, including the capacity to reduce neuroinflammation, protein misfolding and oxidative stress. On the other hand, it is well established that CBD generates its biological effects without exerting a large amount of intrinsic activity upon cannabinoid receptors. Because of this, CBD does not produce undesirable psychotropic effects that are typical of marijuana derivatives. Nonetheless, CBD displays the exceptional potential to become a supplementary medicine in various neurological diseases. Currently, many clinical trials are being conducted to investigate this possibility. This review focuses on the therapeutic effects of CBD in managing neurological disorders like Alzheimer's disease, Parkinson's disease and epilepsy. Overall, this review aims to build a stronger understanding of CBD and provide guidance for future fundamental scientific and clinical investigations, opening a new therapeutic window for neuroprotection. Please cite this article as: Tambe SM, Mali S, Amin PD, Oliveira M. Neuroprotective potential of Cannabidiol: Molecular mechanisms and clinical implications. J Integr Med. 2023; 21(3): 236-244.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Cannabidiol/therapeutic use*
		                        			;
		                        		
		                        			Neuroprotection
		                        			;
		                        		
		                        			Cannabinoids/therapeutic use*
		                        			;
		                        		
		                        			Epilepsy/drug therapy*
		                        			;
		                        		
		                        			Cannabis
		                        			;
		                        		
		                        			Neuroprotective Agents/therapeutic use*
		                        			
		                        		
		                        	
4.Neuroprotective effect and mechanism of cPLA2 inhibitor increases autophagic flux on spinal cord injury.
Wen-Hai YAN ; Ming-Sheng TAN ; Cheng HUANG ; Nan-Shan MA ; Xiang-Sheng TANG
China Journal of Orthopaedics and Traumatology 2023;36(9):873-879
		                        		
		                        			OBJECTIVE:
		                        			To investigate the mechanism of cytosolic phospholipase A2(cPLA2) inhibitor to improve neurological function after spinal cord injury (SCI).
		                        		
		                        			METHODS:
		                        			Thirty-six 3 months old female SD rats, with body mass (280±20) g, were divided into three groups (n=12):sham group, SCI group, and SCI+ arachidonyl trifluoromethyl ketone(AACOCF3) group. Balloon compression SCI model was established in all three groups. In the sham model group, the spinal cord compression model was created after the balloon was placed without pressure treatment, and the remaining two groups were pressurized with the balloon for 48 h. After successful modeling, rats in the SCI+AACOCF3 group were injected intraperitoneally with AACOCF3, a specific inhibitor of cPLA2. The remaining two groups of rats were injected intraperitoneally with saline. The animals were sacrificed in batches on 7 and 14 days after modeling, respectively. And the damaged spinal cord tissues were sampled for pathomorphological observation, to detect the expression of cPLA2 and various autophagic fluxPrelated molecules and test the recovery of motor function.
		                        		
		                        			RESULTS:
		                        			Spinal cord histomorphometry examination showed that the spinal cord tissue in the sham group was structurally intact, with normal numbers and morphology of neurons and glial cells. In the SCI group, spinal cord tissue fractures with large and prominent spinal cord cavities were seen. In the SCI+AACOCF3 group, the spinal cord tissue was more intact than in the SCI group, with more fused spinal cord cavities, more surviving neurons, and less glial cell hyperplasia. Western blot showed that the sham group had the lowest protein expression of LC3-Ⅱ, Beclin 1, p62, and cPLA2 compared with the SCI and SCI+AACOCF3 groups (P<0.05) and the highest protein expression of LC3-Ⅰ (P<0.05). P62 and cPLA2 expression in the SCI group were higher than in the SCI+AACOCF3 group (P<0.05). Behavioral observations showed that the time corresponding to BBB exercise scores was significantly lower in both the SCI and SCI+AACOCF3 groups than in the sham group (P<0.05). Scores at 3, 7, and 14 days after pressurization were higher in the SCI+AACOCF3 group than in the SCI group (P<0.05).
		                        		
		                        			CONCLUSION
		                        			cPLA2 inhibitors can reduce neuronal damage secondary to SCI, promote neurological recovery and improve motor function by improving lysosomal membrane permeability and regulating autophagic flux.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Neuroprotective Agents/pharmacology*
		                        			;
		                        		
		                        			Spinal Cord Injuries/drug therapy*
		                        			;
		                        		
		                        			Spinal Cord Compression
		                        			
		                        		
		                        	
6.Xixin Decoction improves learning and memory ability of SAMP8 by enhancing neuroprotective effect and inhibiting neuroinflammation.
En-Long ZHAO ; Yong-Chang DIWU ; Hu ZHANG ; Li-Qi DUAN ; Xin-Yue HAN ; Ya-Li WANG ; Yuan ZHOU
China Journal of Chinese Materia Medica 2023;48(18):5032-5040
		                        		
		                        			
		                        			This study aimed to explore the possible effect of Xixin Decoction(XXD) on the learning and memory ability of Alzheimer's disease(AD) model senescence-accelerated mouse-prone 8(SAMP8) and the related mechanism in enhancing neuroprotective effect and reducing neuroinflammation. Forty SAMP8 were randomly divided into a model group(10 mL·kg~(-1)·d~(-1)), a probiotics group(0.39 g·kg~(-1)·d~(-1)), a high-dose group of XXD granules(H-XXD, 5.07 g·kg~(-1)·d~(-1)), a medium-dose group of XXD granules(M-XXD, 2.535 g·kg~(-1)·d~(-1)), and a low-dose group of XXD granules(L-XXD, 1.267 5 g·kg~(-1)·d~(-1)). Eight senescence-accelerated mouse-resistant 1(SAMR1) of the same age and strain were assigned to the control group(10 mL·kg~(-1)·d~(-1)). After ten weeks of intragastric administration, the Morris water maze was used to test the changes in spatial learning and memory ability of mice after treatment. Meanwhile, immunofluorescence staining was used to detect the positive expression of receptor for advanced glycation end products(AGER), Toll-like receptor 1(TLR1), and Toll-like receptor 2(TLR2) in the hippocampal CA1 region of mice. Western blot was employed to test the protein expression levels of silencing information regulator 2 related enzyme 1(SIRT1), AGER, TLR1, and TLR2 in the hippocampus of mice. Enzyme linked immunosorbent assay(ELISA) was applied to assess the levels of Aβ_(1-42) in the hippocampus of mice and the levels of nuclear factor κB p65(NF-κB p65), NOD-like receptor protein 3(NLRP3), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) in the serum and hippocampus of mice. Compared with the model group, XXD significantly improved the spatial learning and memory ability of SAMP8, increased the expression of neuroprotective factors in the hippocampus, decreased the levels of neuroinflammatory factors, and inhibited the expression of Aβ_(1-42). In particular, H-XXD significantly increased the expression of SIRT1 in the hippocampus of mice, reduced the expression levels of NF-κB p65, NLRP3, TNF-α, and IL-1β in the serum and hippocampus of mice, and decreased the expression of AGER, TLR1, and TLR2 in the hippocampus of mice(P<0.05 or P<0.01). XXD may improve the spatial learning and memory ability of AD model SAMP8 by enhancing the neuroprotective effect and inhibiting neuroinflammation.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neuroprotective Agents/therapeutic use*
		                        			;
		                        		
		                        			Sirtuin 1/metabolism*
		                        			;
		                        		
		                        			Toll-Like Receptor 2/metabolism*
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Neuroinflammatory Diseases
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
		                        			;
		                        		
		                        			Toll-Like Receptor 1/metabolism*
		                        			;
		                        		
		                        			Alzheimer Disease/genetics*
		                        			;
		                        		
		                        			Hippocampus
		                        			
		                        		
		                        	
7.Neuroprotective effect and mechanism of Zuogui Jiangtang Jieyu Formula on diabetes mellitus complicated with depression model rats based on CX3CL1-CX3CR1 axis.
Ping LI ; Yang LIU ; Man-Shu ZOU ; Ting-Ting WANG ; Hai-Peng GUO ; Ting-Ting REN ; Ying HE ; Hua WANG ; Yu-Hong WANG
China Journal of Chinese Materia Medica 2023;48(21):5822-5829
		                        		
		                        			
		                        			Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1β, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Depression/drug therapy*
		                        			;
		                        		
		                        			Brain-Derived Neurotrophic Factor
		                        			;
		                        		
		                        			Neuroprotective Agents
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Neuroinflammatory Diseases
		                        			;
		                        		
		                        			Diabetes Mellitus
		                        			;
		                        		
		                        			Receptors, Glutamate
		                        			;
		                        		
		                        			CX3C Chemokine Receptor 1/genetics*
		                        			
		                        		
		                        	
8.Protective effects of histone deacetylase 6 specific inhibitor tubastatin A on subarachnoid hemorrhage in rats and the underlying mechanisms.
Yuwei ZHU ; Haiping ZHENG ; Chunli CHEN
Journal of Central South University(Medical Sciences) 2023;48(2):172-181
		                        		
		                        			OBJECTIVES:
		                        			Subarachnoid hemorrhage (SAH) is a serious cerebrovascular disease. Early brain injury (EBI) and cerebral vasospasm are the main reasons for poor prognosis of SAH patients. The specific inhibitor of histone deacetylase 6 (HDAC6), tubastatin A (TubA), has been proved to have a definite neuroprotective effect on a variety of animal models of acute and chronic central nervous system diseases. However, the neuroprotective effect of TubA on SAH remains unclear. This study aims to investigate the expression and localization of HDAC6 in the early stage of SAH, and to evaluate the protective effects of TubA on EBI and cerebral vasospasm after SAH and the underlying mechanisms.
		                        		
		                        			METHODS:
		                        			Adult male SD rats were treated with modified internal carotid artery puncture to establish SAH model. In the first part of the experiment, rats were randomly divided into 6 groups: a sham group, a SAH-3 h group, a SAH-6 h group, a SAH-12 h group, a SAH-24 h group, and a SAH-48 h group. At 3, 6, 12, and 24 h after SAH modeling, the injured cerebral cortex of rats in each group was taken for Western blotting to detect the expression of HDAC6. In addition, the distribution of HDAC6 in the cerebral cortex of the injured side was measured by immunofluorescence double staining in SAH-24 h group rats. In the second part, rats were randomly divided into 4 groups: a sham group, a SAH group, a SAH+TubAL group (giving 25 mg/kg TubA), and a SAH+TubAH group (giving 40 mg/kg TubA). At 24 h after modeling, the injured cerebral cortex tissue was taken for Western blotting to detect the expression levels of HDAC6, endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining to detect apoptosis, and hematoxylin and eosin (HE) staining to detect the diameter of middle cerebral artery.
		                        		
		                        			RESULTS:
		                        			The protein expression of HDAC6 began to increase at 6 h after SAH (P<0.05), peaked at 24 h (P<0.001), and decreased at 48 h, but there was still a difference compared with the sham group (P<0.05). HDAC6 is mainly expressed in the cytoplasm of the neurons. Compared with the sham group, the neurological score was decreased significantly and brain water content was increased significantly in the SAH group (both P<0.01). Compared with the SAH group, the neurological score was increased significantly and brain water content was decreased significantly in the SAH+TubAH group (both P<0.05), while the improvement of the above indexes was not significant in the SAH+TubAL group (both P>0.05). Compared with the sham group, the expression of eNOS was significantly decreased (P<0.01) and the expressions of iNOS and HDAC6 were significantly increased (P<0.05 and P<0.01, respectively) in the SAH group. Compared with the SAH group, the expression of eNOS was significantly increased, and iNOS and HDAC6 were significantly decreased in the SAH+TubA group (all P<0.05). Compared with the SAH group, the number of TUNEL positive cells was significantly decreased and the diameter of middle cerebral artery was significantly increased in the SAH+TubA group (both P<0.05) .
		                        		
		                        			CONCLUSIONS
		                        			HDAC6 is mainly expressed in neurons and is up-regulated in the cerebral cortex at the early stage of SAH. TubA has protective effects on EBI and cerebral vasospasm in SAH rats by reducing brain edema and cell apoptosis in the early stage of SAH. In addition, its effect of reducing cerebral vasospasm may be related to regulating the expression of eNOS and iNOS.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Subarachnoid Hemorrhage/drug therapy*
		                        			;
		                        		
		                        			Vasospasm, Intracranial/metabolism*
		                        			;
		                        		
		                        			Histone Deacetylase Inhibitors/therapeutic use*
		                        			;
		                        		
		                        			Neuroprotective Agents/therapeutic use*
		                        			;
		                        		
		                        			Histone Deacetylase 6/pharmacology*
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Brain Injuries/drug therapy*
		                        			
		                        		
		                        	
9.Ginsenoside Rb1 improves brain, lung, and intestinal barrier damage in middle cerebral artery occlusion/reperfusion (MCAO/R) micevia the PPARγ signaling pathway.
Lin-Jie SU ; Yu-Chuan REN ; Zhuo CHEN ; Hui-Fen MA ; Fan ZHENG ; Fang LI ; Yuan-Yuan ZHANG ; Shuai-Shuai GONG ; Jun-Ping KOU
Chinese Journal of Natural Medicines (English Ed.) 2022;20(8):561-571
		                        		
		                        			
		                        			Ischemic stroke causes brain inflammation and multi-organ injury, which is closely associated with the peroxisome proliferator-activated receptor-gamma (PPARγ) signaling pathway. Recent studies have indicated that ginsenoside Rb1 (GRb1) can protect the integrity of the blood-brain barrier after stroke. In the current study, a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established to determine whether GRb1 can ameliorate brain/lung/intestinal barrier damage via the PPARγ signaling pathway. Staining (2,3,5-triphenyltetrazolium chloride, hematoxylin, and eosin) and Doppler ultrasonography were employed to detect pathological changes. Endothelial breakdown was investigated with the leakage of Evans Blue dye and the expression of TJs (tight junctions) and AJs (adherent junctions). Western blot and immunofluorescence were used to determine the levels of cell junction proteins, PPARγ and NF-κB. Results showed that GRb1 significantly mitigated multi-organ injury and increased the expression of cerebral microvascular, pulmonary vascular, and intestinal epithelial connexins. In brain, lung, and intestinal tissues, GRb1 activated PPARγ, decreased the levels of phospho-NF-κB p65, and inhibited the production of proinflammatory cytokines, thereby maintaining barrier permeability. However, co-treatment with GRb1 and the PPARγ antagonist GW9662 reversed the barrier-protective effect of GRb1. These findings indicated that GRb1 can improve stroke-induced brain/lung/intestinal barrier damagevia the PPARγ pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Brain Ischemia
		                        			;
		                        		
		                        			Ginsenosides
		                        			;
		                        		
		                        			Infarction, Middle Cerebral Artery
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			Neuroprotective Agents
		                        			;
		                        		
		                        			PPAR gamma
		                        			;
		                        		
		                        			Reperfusion
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
10.Diverse sesquiterpenoids from Litsea lancilimba Merr. with potential neuroprotective effects against H2O2-induced SH-SY5Y cell injury.
Yi-Jie ZHANG ; Ming BAI ; Jia-Yi LI ; Shu-Yan QIN ; Yu-Yang LIU ; Xiao-Xiao HUANG ; Jiang ZHENG ; Shao-Jiang SONG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):701-711
		                        		
		                        			
		                        			Five undescribed sesquiterpenoids (1-5), and nine known sesquiterpenoids (6-14) were obtained from the fruits of Litsea lancilimba Merr. by LC-MS/MS molecular networking strategies. Litsemene A (1) possessed a unique 8-member ring through unexpected cyclization of the methyl group on C-10 of guaiane. Their structures were elucidated by spectroscopic techniques including IR, UV, NMR, HR-ESI-MS, and their absolute configurations were assigned by ECD calculations. All isolated sesquiterpenoids were analyzed by bioinformatics and evaluated for their neuroprotective effects against H2O2-induced injury in human neuroblastoma SH-SY5Y cells.
		                        		
		                        		
		                        		
		                        			Chromatography, Liquid
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hydrogen Peroxide/toxicity*
		                        			;
		                        		
		                        			Litsea
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Neuroblastoma/drug therapy*
		                        			;
		                        		
		                        			Neuroprotective Agents/pharmacology*
		                        			;
		                        		
		                        			Sesquiterpenes/chemistry*
		                        			;
		                        		
		                        			Tandem Mass Spectrometry
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail