1.Anti-infectious pneumonia target discovery and molecular mechanism study of Jingfang Granules.
Mei-Mei ZHAO ; Lu YAO ; Jing-Chun YAO ; Cheng-Hong SUN ; Gui-Min ZHANG ; Ke-Wu ZENG
China Journal of Chinese Materia Medica 2023;48(3):789-796
This study aimed to identify the direct pharmacological targets of Jingfang Granules in treating infectious pneumonia via "target fishing" strategy. Moreover, the molecular mechanism of Jingfang Granules in treating infectious pneumonia was also investigated based on target-related pharmacological signaling pathways. First, the Jingfang Granules extract-bound magnetic nanoparticles were prepared, which were incubated with lipopolysaccharide(LPS)-induced mouse pneumonia tissue lysates. The captured proteins were analyzed by high-resolution mass spectrometry(HRMS), and the target groups with specific binding to the Jingfang Granules extract were screened out. Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis was used to identify the target protein-associated signaling pathways. On this basis, the LPS-induced mouse model of infectious pneumonia was established. The possible biological functions of target proteins were verified by hematoxylin-eosin(HE) staining and immunohistochemical assay. A total of 186 Jingfang Granules-specific binding proteins were identified from lung tissues. KEGG pathway enrichment analysis showed that the target protein-associated signaling pathways mainly included Salmonella infection, vascular and pulmonary epithelial adherens junction, ribosomal viral replication, viral endocytosis, and fatty acid degradation. The target functions of Jingfang Granules were related to pulmonary inflammation and immunity, pulmonary energy metabolism, pulmonary microcirculation, and viral infection. Based on the in vivo inflammation model, Jingfang Granules significantly improved the alveolar structure of the LPS-induced mouse model of infectious pneumonia and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6). Meanwhile, Jingfang Gra-nules significantly up-regulated the expressions of key proteins of mitochondrial function COX Ⅳ and ATP, microcirculation-related proteins CD31 and Occludin, and proteins associated with viral infection DDX21 and DDX3. These results suggest that Jingfang Gra-nules can inhibit lung inflammation, improve lung energy metabolism and pulmonary microcirculation, resist virus infection, thus playing a protective role in the lung. This study systematically explains the molecular mechanism of Jingfang Granules in the treatment of respiratory inflammation from the perspective of target-signaling pathway-pharmacological efficacy, thereby providing key information for clinical rational use of Jingfang Granules and expanding potential pharmacological application.
Animals
;
Mice
;
Lipopolysaccharides
;
Pneumonia
;
Inflammation
;
Anti-Infective Agents
;
Biological Assay
;
Disease Models, Animal
;
Interleukin-6
2.Organoids: approaches and utility in cancer research.
Bingrui ZHOU ; Zhiwei FENG ; Jun XU ; Jun XIE
Chinese Medical Journal 2023;136(15):1783-1793
Organoids are three-dimensional cellular structures with self-organizing and self-differentiation capacities. They faithfully recapitulate structures and functions of in vivo organs as represented by functionality and microstructural definitions. Heterogeneity in in vitro disease modeling is one of the main reasons for anti-cancer therapy failures. Establishing a powerful model to represent tumor heterogeneity is crucial for elucidating tumor biology and developing effective therapeutic strategies. Tumor organoids can retain the original tumor heterogeneity and are commonly used to mimic the cancer microenvironment when co-cultured with fibroblasts and immune cells; therefore, considerable effort has been made recently to promote the use of this new technology from basic research to clinical studies in tumors. In combination with gene editing technology and microfluidic chip systems, engineered tumor organoids show promising abilities to recapitulate tumorigenesis and metastasis. In many studies, the responses of tumor organoids to various drugs have shown a positive correlation with patient responses. Owing to these consistent responses and personalized characteristics with patient data, tumor organoids show excellent potential for preclinical research. Here, we summarize the properties of different tumor models and review their current state and progress in tumor organoids. We further discuss the substantial challenges and prospects in the rapidly developing tumor organoid field.
Humans
;
Neoplasms/genetics*
;
Organoids/pathology*
;
Carcinogenesis
;
Models, Biological
;
Precision Medicine/methods*
;
Tumor Microenvironment
3.Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics.
Yong ZENG ; Dong-Hua ZOU ; Ying FAN ; Qing XU ; Lu-Yang TAO ; Yi-Jiu CHEN ; Zheng-Dong LI
Journal of Forensic Medicine 2023;39(5):471-477
The finite element method (FEM) is a mathematical method for obtaining approximate solutions to a wide variety of engineering problems. With the development of computer technology, it is gradually applied to the study of biomechanics of human body. The application of the combination of FEM and biomechanics in exploring the relationship between vascular injury and disease, and pathological mechanisms will be a technological innovation for traditional forensic medicine. This paper reviews the construction and development of human vascular FEM modeling, and its research progress on the vascular biomechanics. This paper also looks to the application prospects of FEM modeling in forensic pathology.
Humans
;
Computer Simulation
;
Models, Biological
;
Biomechanical Phenomena
;
Finite Element Analysis
;
Forensic Medicine
4.Development of metabolic models with multiple constraints: a review.
Xue YANG ; Peiji ZHANG ; Zhitao MAO ; Xin ZHAO ; Ruoyu WANG ; Jingyi CAI ; Zhiwen WANG ; Hongwu MA
Chinese Journal of Biotechnology 2022;38(2):531-545
Constraint-based genome-scale metabolic network models (genome-scale metabolic models, GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric constraints, other constraints such as enzyme availability and thermodynamic feasibility may also limit the cellular phenotype solution space. Recently, extended GEM models considering either enzymatic or thermodynamic constraints have been developed to improve model prediction accuracy. This review summarizes the recent progresses on metabolic models with multiple constraints (MCGEMs). We presented the construction methods and various applications of MCGEMs including the simulation of gene knockout, prediction of biologically feasible pathways and identification of bottleneck steps. By integrating multiple constraints in a consistent modeling framework, MCGEMs can predict the metabolic bottlenecks and key controlling and modification targets for pathway optimization more precisely, and thus may provide more reliable design results to guide metabolic engineering of industrially important microorganisms.
Genome
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
;
Models, Biological
;
Thermodynamics
5.Meso-scale Discovery Assay Detects the Changes of Plasma Cytokine Levels in Mice after Low or High LET Ionizing Irradiation.
Rong JIA ; Ya Xiong CHEN ; Ya Rong DU ; Bu Rong HU
Biomedical and Environmental Sciences 2021;34(7):540-551
Objective:
To obtain precise data on the changes in the levels of 29 cytokines in mice after high or low linear energy transfer (LET) irradiation and to develop an accurate model of radiation exposure based on the cytokine levels after irradiation.
Methods:
Plasma samples harvested from mice at different time points after carbon-ion or X-ray irradiation were analyzed using meso-scale discovery (MSD), a high-throughput and sensitive electrochemiluminescence measurement technique. Dose estimation equations were set up using multiple linear regression analysis.
Results:
The relative levels of IL-6 at 1 h, IL-5 and IL-6 at 24 h, and IL-5, IL-6 and IL-15 at 7 d after irradiation with two intensities increased dose-dependently. The minimum measured levels of IL-5, IL-6 and IL-15 were up to 4.0076 pg/mL, 16.4538 pg/mL and 0.4150 pg/mL, respectively. In addition, dose estimation models were established and verified.
Conclusions
The MSD assay can provide more accurate data regarding the changes in the levels of the cytokines IL-5, IL-6 and IL-15. These cytokines could meet the essential criteria for radiosensitive biomarkers and can be used as radiation indicators. Our prediction models can conveniently and accurately estimate the exposure dose in irradiated organism.
Animals
;
Biological Assay
;
Biomarkers/blood*
;
Carbon
;
Cytokines/blood*
;
Female
;
Heavy Ions
;
Linear Energy Transfer
;
Linear Models
;
Mice
;
Radiation Dosage
;
Radiation, Ionizing
6.Thirty years development of ¹³C metabolic flux analysis: a review.
Chinese Journal of Biotechnology 2021;37(5):1510-1525
¹³C metabolic flux analysis (¹³C-MFA) enables the precise quantification of intracellular metabolic reaction rates by analyzing the distribution of mass isotopomers of proteinogenic amino acids or intracellular metabolites through ¹³C labeling experiments. ¹³C-MFA has received much attention as it can help systematically understand cellular metabolic characteristics, guide metabolic engineering design and gain mechanistic insights into pathophysiology. This article reviews the advances of ¹³C-MFA in the past 30 years and discusses its potential and future perspective, with a focus on its application in industrial biotechnology and biomedicine.
Amino Acids
;
Carbon Isotopes
;
Isotope Labeling
;
Metabolic Engineering
;
Metabolic Flux Analysis
;
Models, Biological
7.Advances in the development of constraint-based genome-scale metabolic network models.
Jingru ZHOU ; Peng LIU ; Jianye XIA ; Yingping ZHUANG
Chinese Journal of Biotechnology 2021;37(5):1526-1540
Genome-scale metabolic network model (GSMM) is becoming an important tool for studying cellular metabolic characteristics, and remarkable advances in relevant theories and methods have been made. Recently, various constraint-based GSMMs that integrated genomic, transcriptomic, proteomic, and thermodynamic data have been developed. These developments, together with the theoretical breakthroughs, have greatly contributed to identification of target genes, systems metabolic engineering, drug discovery, understanding disease mechanism, and many others. This review summarizes how to incorporate transcriptomic, proteomic, and thermodynamic-constraints into GSMM, and illustrates the shortcomings and challenges of applying each of these methods. Finally, we illustrate how to develop and refine a fully integrated GSMM by incorporating transcriptomic, proteomic, and thermodynamic constraints, and discuss future perspectives of constraint-based GSMM.
Genome/genetics*
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
;
Models, Biological
;
Proteomics
8.Effects of different alveolar bone finite element models on the biomechanical responses of periodontal ligament.
Jianlei WU ; Yunfeng LIU ; Boxiu LI ; Dongcai WANG ; Xingtao DONG ; Jiali ZHOU
Journal of Biomedical Engineering 2021;38(2):295-302
In the study of oral orthodontics, the dental tissue models play an important role in finite element analysis results. Currently, the commonly used alveolar bone models mainly have two kinds: the uniform and the non-uniform models. The material of the uniform model was defined with the whole alveolar bone, and each mesh element has a uniform mechanical property. While the material of the elements in non-uniform model was differently determined by the Hounsfield unit (HU) value of computed tomography (CT) images where the element was located. To investigate the effects of different alveolar bone models on the biomechanical responses of periodontal ligament (PDL), a clinical patient was chosen as the research object, his mandibular canine, PDL and two kinds of alveolar bone models were constructed, and intrusive force of 1 N and moment of 2 Nmm were exerted on the canine along its root direction, respectively, which were used to analyze the hydrostatic stress and the maximal logarithmic principal strain of PDL under different loads. Research results indicated that the mechanical responses of PDL had been affected by alveolar bone models, no matter the canine translation or rotation. Compared to the uniform model, if the alveolar bone was defined as the non-uniform model, the maximal stress and strain of PDL were decreased by 13.13% and 35.57%, respectively, when the canine translation along its root direction; while the maximal stress and strain of PDL were decreased by 19.55% and 35.64%, respectively, when the canine rotation along its root direction. The uniform alveolar bone model will induce orthodontists to choose a smaller orthodontic force. The non-uniform alveolar bone model can better reflect the differences of bone characteristics in the real alveolar bone, and more conducive to obtain accurate analysis results.
Biomechanical Phenomena
;
Computer Simulation
;
Finite Element Analysis
;
Humans
;
Models, Biological
;
Periodontal Ligament
;
Stress, Mechanical
;
Tooth Movement Techniques
9.ADP-ribosylhydrolases: from DNA damage repair to COVID-19.
Lily YU ; Xiuhua LIU ; Xiaochun YU
Journal of Zhejiang University. Science. B 2021;22(1):21-30
Adenosine diphosphate (ADP)-ribosylation is a unique post-translational modification that regulates many biological processes, such as DNA damage repair. During DNA repair, ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases. A group of ADP-ribosylhydrolases have a catalytic domain, namely the macrodomain, which is conserved in evolution from prokaryotes to humans. Not all macrodomains remove ADP-ribosylation. One set of macrodomains loses enzymatic activity and only binds to ADP-ribose (ADPR). Here, we summarize the biological functions of these macrodomains in DNA damage repair and compare the structure of enzymatically active and inactive macrodomains. Moreover, small molecular inhibitors have been developed that target macrodomains to suppress DNA damage repair and tumor growth. Macrodomain proteins are also expressed in pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, these domains may not be directly involved in DNA damage repair in the hosts or pathogens. Instead, they play key roles in pathogen replication. Thus, by targeting macrodomains it may be possible to treat pathogen-induced diseases, such as coronavirus disease 2019 (COVID-19).
ADP-Ribosylation
;
COVID-19/metabolism*
;
DNA Repair/physiology*
;
Evolution, Molecular
;
Humans
;
Models, Biological
;
Models, Molecular
;
N-Glycosyl Hydrolases/metabolism*
;
Poly(ADP-ribose) Polymerases/metabolism*
;
Protein Domains
;
SARS-CoV-2/pathogenicity*
10.Advances and applications of organoids: a review.
Donghong YU ; Hua CAO ; Xinrui WANG
Chinese Journal of Biotechnology 2021;37(11):3961-3974
Novel model systems have provided powerful tools for the research of human biology. Despite of being widely used, the conventional research models could not precisely describe the human physiological phenomenon. Organoids are three-dimensional multicellular aggregates derived from stem cells or organ progenitors that could differentiate and self-organize to recapitulate some specific functionalities and architectures of their in vivo counterpart organs. Organoids can be used to simulate organogenesis because of their human origin. In addition, the genomic stability of organoids could be well maintained during long-term amplification in vitro. Moreover, organoids can be cryopreserved as a live biobank for high-throughput screening. Combinatorial use of organoids with other emerging technologies (e.g. gene editing, organ-on-a-chip and single-cell RNA sequencing) could overcome the bottlenecks of conventional models and provide valuable information for disease modelling, pharmaceutical research, precision medicine and regenerative medicine at the organ level. This review summarizes the classifications, characteristics, current applications, combined use with other technologies and future prospects of organoids.
Gene Editing
;
Humans
;
Models, Biological
;
Organoids
;
Regenerative Medicine
;
Stem Cells

Result Analysis
Print
Save
E-mail