1.Wenxiao Powder Alleviates Depression by Promoting Neurogenesis via BDNF/TrkB/ERK/CREB Signaling Pathway
Duo ZHANG ; Xiuhui GUO ; Yucheng LI ; Yunli GAO ; Ming BAI ; Xiangli YAN ; Erping XU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(8):100-108
ObjectiveTo decipher the mechanism of Wenxiao powder in alleviating corticosterone-induced depression-like behaviors in mice. MethodMale ICR mice were randomized into normal, model, paroxetine (20 mg·kg-1), and low- and high-dose (3.27, 6.54 g·kg-1, respectively) Wenxiao powder groups. The mice in normal and model groups received equal volume of saline. Other groups except the normal group were injected with corticosterone subcutaneously 0.5 h after gavage to induce depression. Mice were tested for depression-like behaviors after drug administration. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the corticosterone content in the serum. Nissl staining was performed to observe the damage of hippocampal neurons. Immunofluorescence staining was employed to observe the expression of double cortin (DCX) in the dentate gyrus (DG) of the hippocampus. Western blot was employed to determine the expression of proteins in the brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB)/extracellular signal-regulated kinase (ERK)/cAMP-response element-binding protein (CREB) pathway in the hippocampus. ResultCompared with the normal group, the model group showed decreased sucrose preference rate, increased immobility time in the tail suspension test (P<0.01), and reduced residence time in the central area of the open field and the total movement distance (P<0.05, P<0.01). In addition, the modeling elevated the corticosterone level in the serum (P<0.01), decreased the volume and intensified the nuclear staining of hippocampal neurons in the DG area, reduced the expression of DCX in the DG area, and down-regulated the protein levels of BDNF, phosphorylated (p)-TrkB, p-ERK, and p-CREB in the hippocampus (P<0.05, P<0.01). Compared with the model group, low-dose Wenxiao powder improved the mouse behavivors in the sucrose preference, open field, and tail suspension tests (P<0.05, P<0.01), and high-dose Wenxiao powder improved the behaviors in the sucrose preference and open field tests (P<0.05, P<0.01). In addition, Wenxiao powder lowered the serum corticosterone level (P<0.01) and recovered the structure and morphology of neurons with obvious nuclei and presence of Nissl bodies in the DG area of the hippocampus. Moreover, Wenxiao powder at both doses promoted the expression of DCX in the DG area, and high-dose Wenxiao powder up-regulated the protein levels of BDNF, p-TrkB, p-ERK, and p-CREB in the hippocampus (P<0.05, P<0.01). ConclusionWenxiao powder can alleviate corticosterone-induced depression-like behaviors and promote neurogenesis in mice possibly by activating the BDNF/TrkB/ERK/CREB signaling pathway.
2. Lycium barbarian seed oil activates Nrf2/ARE pathway to reduce oxidative damage in testis of subacute aging rats
Rui-Ying TIAN ; Wen-Xin MA ; Zi-Yu LIU ; Hui-Ming MA ; Sha-Sha XING ; Na HU ; Chang LIU ; Biao MA ; Jia-Yang LI ; Hu-Jun LIU ; Chang-Cai BAI ; Dong-Mei CHEN
Chinese Pharmacological Bulletin 2024;40(3):490-498
Aim To explore the effects of Lycium berry seed oil on Nrf2/ARE pathway and oxidative damage in testis of subacute aging rats. Methods Fifty out of 60 male SD rats, aged 8 weeks, were subcutaneously injected with 125 mg • kg"D-galactosidase in the neck for 8 weeks to establish a subacute senescent rat model. The presence of senescent cells was observed using P-galactosidase ((3-gal), while testicular morphology was examined using HE staining. Serum levels of testosterone (testosterone, T), follicle-stimulating hormone ( follicle stimulating hormone, FSH ) , luteinizing hormone ( luteinizing hormone, LH ) , superoxide dis-mutase ( superoxide dismutase, SOD ) , glutathione ( glutathione, GSH) and malondialdehyde ( malondial-dehyde, MDA) were measured through ELISA, and the expressions of factors related to aging, oxidative damage, and the Nrf2/ARE pathway were assessed via immunohistochemical analysis and Western blotting. Results After successfully identifying the model, the morphology of the testis was improved and the intervention of Lycium seed oil led to a down-regulation in the expression of [3-gal and -yH2AX. The serum levels of SOD, GSH, T, and FSH increased while MDA and LH decreased (P 0. 05) . Additionally, there was an up-regulated expression of Nrf2, GCLC, NQOl, and SOD2 proteins in testicular tissue ( P 0. 05 ) and nuclear expression of Nrf2 in sertoli cells. Conclusion Lycium barbarum seed oil may reduce oxidative damage in testes of subacute senescent rats by activating the Nrf2/ARE signaling pathway.
3.Role of Flavonoids in Traditional Chinese Medicine to Improve Cerebral Ischaemia-reperfusion Injury and Its Mechanism: A Review
Lu YUE ; Tianbao ZHOU ; Xiangli YAN ; Mingsan MIAO ; Yan LI ; Ming BAI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):269-279
Cerebral ischemia-reperfusion injury (CIRI) has a very high incidence, disability, and mortality rates, which seriously affects human life and health. In recent years, modern medicine has made some progress in the diagnosis and treatment of CIRI, but there are still problems such as difficulties in postoperative rehabilitation and adverse drug reactions, and new therapeutic drugs for CIRI are urgently needed. As an important class of active ingredients in traditional Chinese medicine, flavonoids can play antioxidant, apoptosis inhibition, anti-inflammatory, and other pharmacological effects to improve brain tissue damage, which is important for improving the quality of life of CIRI patients and slowing down the aging of the social population. Numerous studies have found that flavonoids in traditional Chinese medicine can regulate cell surface receptors Toll-like receptor 4/nuclear factor-kappaB (TLR4/NF-κB), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), adenylate-activated protein kinase/mammalian target of rapamycin protein (AMPK/mTOR), Ras homologous gene family member A/Rho-associated coiled-coil protein kinase (RhoA/ROCK), nuclear factor E2-associated factor 2/Kelch-like epoxychloropropane-associated protein-1/haemoglobin oxygenase 1 (Nrf2/Keap1/ HO-1), Notch, and other signaling pathways, so as to regulate the transcription and expression of related proteins after CIRI, alleviate brain tissue injury, and improve CIRI. This paper analyzed the relevant literature in China and abroad in recent years, reviewed the mechanism of action and related pathways of flavonoids in traditional Chinese medicine to improve CIRI, and explored the new therapeutic direction of CIRI at the metabolic level, with a view to providing a basis for the further development and application of flavonoids in traditional Chinese medicine.
4.Research progress in micro/nanobubbles for ultrasound diagnosis or treatment
Qing-qing AN ; Chen-xi LI ; Shao-kun YANG ; Xiao-ming HE ; Yue-heng WANG ; Chao-xing HE ; Bai XIANG
Acta Pharmaceutica Sinica 2024;59(3):581-590
In the past few decades, microbubbles were widely used as ultrasound contrast agents in the field of tumor imaging. With the development of research, ultrasound targeted microbubble destruction technology combined with drug-loaded microbubbles can achieve precise drug release and play a therapeutic role. As a micron-scale carrier, microbubbles are difficult to penetrate the endothelial cell space of tumors, and nano-scale drug delivery system—nanobubbles came into being. The structure of the two is similar, but the difference in size highlights the unique advantages of nanobubbles in drug delivery. Based on the classification principle of shell materials, this review summarized micro/nanobubbles used for ultrasound diagnosis or treatment and discussed the possible development directions, providing references for the subsequent development.
5.The Influence of Developmental Dyslexia-associated Gene KIAA0319 on Brain Development——From Animals to Humans
Jie CHEN ; Xiao-Yun YU ; Yi-Ming YANG ; Jian-E BAI
Progress in Biochemistry and Biophysics 2024;51(6):1305-1315
Developmental dyslexia (DD) is a prevalent learning disorder, and the KIAA0319 gene is a DD-associated gene, potentially affecting reading ability by influencing brain development. This review provides an overview of the impact of KIAA0319 gene on brain development in fish, non-primate mammals, primate mammals, and humans. In studies involving fish, the kiaa0319 gene was found to be expressed in the brain, eyes and ears of zebrafish. In mammalian studies, abnormal Kiaa0319 gene expression affected neuronal migration direction and final position, as well as dendritic morphology during embryonic development in rats, leading to abnormal white and gray matter development. Knocking down the Kiaa0319 gene impaired the primary auditory cortex in rats, resulting in phoneme processing impairment similar to DD. In mice, Kiaa0319 overexpression affected the neuronal migration process, causing delayed radial migration of neurons to the cortical plate. Knockout of the Kiaa0319 gene led to abnormal development of the gray matter in mice, resulting in reduced volume of the medial geniculate nucleus and then impacting auditory processing. In primate studies, research on marmosets found that KIAA0319 gene is expressed in the visual, auditory, and motor pathways, while studies on chimpanzees revealed that KIAA0319 gene abnormalities primarily affected the gray matter volume and microstructure of the posterior superior temporal gyrus, morphology of the superior temporal sulcus and gray matter volume of the inferior frontal gyrus. The impact of KIAA0319 gene on human brain development is mainly concentrated in the left temporal lobe, where abnormal KIAA0319 gene expression caused reduced gray matter in the left inferior temporal gyrus, middle temporal gyrus and fusiform gyrus, as well as reduced white matter volume in the left temporoparietal cortex. Abnormalities in KIAA0319 gene also led to decreased hemispheric asymmetry in the superior temporal sulcus. The above-mentioned brain regions are crucial for language and reading processing. It is analyzed that the abnormalities in the DD-associated KIAA0319 gene affect neuronal migration and morphology during brain development, resulting in abnormal development of subcortical structures (such as the medial geniculate nucleus and lateral geniculate nucleus) and cortical structures (including the left temporal cortex, temporoparietal cortex and fusiform gyrus) which are involved in human visual and auditory processing as well as language processing. Impairment of the medial geniculate nucleus affects the information transmission to the auditory cortex, leading to impaired phoneme processing. Abnormalities in the magnocellular layers within the lateral geniculate nucleus hinder the normal transmission of visual information to the visual cortex, affecting the dorsal visual pathway. The left temporal lobe is closely related to language and reading, and abnormalities in its gray matter and connections with other brain areas can affect the language and word processing. In summary, abnormalities in the KIAA0319 gene can partly explain current research findings on the cognitive and neural mechanisms of DD, providing a genetic basis for theoretical models related to DD (such as general sensorimotor theory and the magnocellular theory). However, the mechanism of developmental dyslexia is complex, and there are mutual influences between different DD-associated genes and between genes and the environment, which require further exploration.
6.MiR-878 Aggravates Hypoxia/Reoxygenation Injury in H9c2 Cardiomyocytes by Inducing Pim1-mediated Mitochondrial Fission
Shu-Wen HU ; Jing-Jing ZHANG ; Ming BAI ; Xiao-Wei NIU
Progress in Biochemistry and Biophysics 2024;51(4):912-923
ObjectiveAcute myocardial infarction (AMI) is a highly prevalent and deadly disease globally, with its incidence continuing to rise in recent years. Timely reperfusion therapy is crucial for improving the prognosis of AMI patients. However, myocardial reperfusion can lead to irreversible myocardial ischemia/reperfusion (MI/R) injury, which is associated with adverse cardiovascular outcomes following AMI. Studies have shown that microRNAs (miRNAs) are abnormally expressed during MI/R injury and play an important role in the fate of cardiomyocytes. Effective preventive and therapeutic strategies against MI/R injury remain lacking in clinical practice, necessitating elucidation of the molecular mechanisms underlying MI/R onset and progression. This study investigated the role of microRNA-878 (miR-878) in the regulation of mitochondria-mediated apoptosis in MI/R injury. MethodsThe H9c2 cells were flushed with a gas mixture containing 1% O2, 5% CO2 and 94% N2 for 3 h. Then the cells were incubated in complete culture medium under 5% CO2 and 95% air for 6 h to mimic in vivo hypoxia/reoxygenation (H/R) injury. Cell viability were detected by CCK-8 assay. The concentrations of lactate dehydrogenase (LDH) were then measured.The level of apoptosis was analyzed by flow cytometry. The morphology of mitochondria was analyzed by immunofluorescence and laser confocal microscopy. The levels of mitochondrial reactive oxygen species (mtROS) were detected by immunofluorescence. Dual luciferase reporter gene assay was used to study the binding site of miR-878 and Pim1. RNA immunoprecipitation (RIP) assay was used to verify the binding relationship between miR-878 and Pim1. The gene expression levels were detected by real-time fluorescent quantitative PCR (RT-qPCR) and Western blot. ResultsThe study found that compared with the control group, the expression of miR-878 in H/R-treated H9c2 cells was significantly increased ((1.00±0.25) vs (9.70±2.63), P<0.01). In H/R-induced cells, transfection of miR-878 inhibitor significantly increased cell viability ((46.67±3.00) vs (74.62±4.08), P<0.000 1), and decreased LDH release ((358.58±41.71) vs (179.09±15.59), P<0.000 1) and cell apoptosis rate ((43.41±0.72) vs (27.42±4.48), P<0.01). At the same time, downregulation of miR-878 expression significantly inhibited DRP1-mediated mitochondrial overdivision and mtROS production ((6.60±0.57) vs (4.32±0.91), P<0.000 1). The mechanism study showed that miR-878 could target and bind Pim1 and inhibit the expression level of Pim1 ((1.00±0.13) vs (0.38±0.03), P<0.01). Rescue experiments confirmed that down-regulation of Pim1 expression significantly reversed the anti-injury effect of miR-878 inhibitor in H9c2 cells (P<0.01), promoted mitochondrial overdivision and mtROS production ((1.00±0.12) vs (2.41±0.12), P<0.01), and decreased the expression level of p-DRP1 ((1.00±0.15) vs (0.59±0.06), P<0.05). ConclusionThe present study demonstrates that miR-878 expression is upregulated in H9c2 cardiomyocytes subjected to H/R injury. Inhibition of miR-878 expression alleviates H/R-induced cardiomyocyte damage. Notably, downregulation of miR-878 significantly inhibits DRP1-mediated mitochondrial fission and mitigates mtROS production. Mechanistically, miR-878 targets and binds to the 3'-UTR of the Pim1 gene, thereby suppressing Pim1 protein expression. Collectively, these findings suggest that under H/R conditions, miR-878 promotes excessive mitochondrial fragmentation through DRP1 activation by targeting Pim1, ultimately contributing to cardiomyocyte injury. Modulation of the miR-878/Pim1 axis may represent a potential therapeutic strategy for mitigating MI/R-induced cardiac damage.
7.Study on The Toxicity of Strychnos nux-vomica L. in vivo in Rats:Application of Bagging Algorithm and 16S rRNA Gene Sequencing Technology in Toxicology Research
Xi-Ye WANG ; Le-Er BAO ; Ming-Yang JIANG ; Dan LI ; Mei-Rong BAI
Progress in Biochemistry and Biophysics 2024;51(2):404-422
ObjectiveThe traditional Chinese medicine Strychnos nux-vomica L. (SN) has the clinical effect of reducing swelling and relieving pain; however, SN is toxic due to its alkaloid components. Little is known about the endogenous metabolic changes induced by SN toxicity in rats and their potential effects on the metabolic dysregulation of intestinal microbiota. Therefore, toxicological investigation of SN is of great significance to its safety assessment. In this study, the toxic mechanisms of SN were explored using a combination of metabonomics and 16S rRNA gene sequencing. MethodsThe toxic dose, intensity, and target organ of SN were determined in rats using acute, cumulative, and subacute toxicity tests. UHPLC-MS was used to analyze the serum, liver, and renal samples of rats after intragastric SN administration. The decision tree and K Nearest Neighbor (KNN) model were established based on the bootstrap aggregation (bagging) algorithm to classify the omics data. After samples were extracted from rat feces, the high-throughput sequencing platform was used to analyze the 16S rRNA V3-V4 region of bacteria. ResultsThe bagging algorithm improved the accuracy of sample classification. Twelve biomarkers were identified, where their metabolic dysregulation may be responsible for SN toxicity in vivo. Several types of bacteria such as Bacteroidetes, Anaerostipes, Oscillospira and Bilophila, were demonstrated to be closely related to physiological indices of renal and liver function, indicating that SN-induced liver and kidney damage may be related to the disturbance of these intestinal bacteria. ConclusionThe toxicity mechanism of SN was revealed in vivo, which provides a scientific basis for the safe and rational clinical use of SN.
8.Career development of targeted admission medical students:A seven-year follow-up analysis based on four medical colleges
Hao-Qing TANG ; Hui-Xian ZHENG ; Bai-Song ZHANG ; Ming-Yue LI ; Xiao-Yun LIU
Chinese Journal of Health Policy 2024;17(1):43-50
Objective:Utilizing a seven-year panel data set of a targeted admission medical student cohort,this study aims to examine their career development and provide insights for retaining healthcare talent in township health centers and village clinics in the central and western rural areas of China.Method:Starting from 2015,cohorts of targeted and general clinical graduates from four medical colleges in central and western China were selected and tracked for their career progression.Results:The targeted graduates'standardized residency training and medical licensing examination pass rates were similar to those of general clinical graduates.They advanced more quickly in professional titles and positions,with 82.5%becoming attending physicians and 16.2%obtaining positions in the seventh year after graduation.However,their monthly income was significantly lower than that of general clinical graduates,and this income discrepancy expanded annually.As of December 2022,among the 493 targeted graduates who completed their contracts,38.5%stayed in grassroots positions.Of those who left,60%moved to county-level or higher public hospitals,7.9%pursued further studies,and 27.7%were unemployed.Conclusion:Targeted graduates are well-trained and advance rapidly in their careers,but their lower income significantly impacts their willingness to remain at the grassroots level.After completing their service period,about one-third of the targeted graduates choose to stay in grassroots positions.
9.Analysis of constraints and policy recommendations for the development of pediatric drugs in China:Based on the perspective of pharmaceutical enterprises
Rui-Lin DING ; Ming-Yu BAI ; Jia-Nan FU ; Xin-Yu LI ; Rong SHAO
Chinese Journal of Health Policy 2024;17(2):59-65
Objective:To provide a basis for improving the design and implementation of policies for ensuring the supply of pediatric drugs in China.Method:Based on the perspective of pharmaceutical enterprises,reviewed literature and conducts questionnaire surveys to identify the constraints in the development of pediatrict drugs throughout the entire drug lifecycle,and analyzes the constraints'concentration and urgency.Result:The main constraints include:difficulty in conducting clinical trials for children;the current registration and approval rules lack consideration for the specificity of pediatric drugs and specific requirements for application materials;lack of implementation rules and measures in the implementation process of incentive policies for pediatric drug production;The market interest mechanism of pediatric drugs is not yet perfect.Among them,research and development and payment for use are currently relatively concentrated issues.Discussion and suggestions:It is recommended that China fully utilize existing clinical trial data of pediatric and broaden sources,take multiple measures to increase investment in pediatric drug R&D;Develop special guidelines for pediatric drug application and encourage adult drug registration to submit pediatric research plans;Explore the optimization path of pediatrict drug production and supply based on typical cases;Provide more space for pediatric drugs in the rules of drug use and payment.
10.Mild Hypothemia Inhibits Interferon-α2b-induced AC16 Cardiomyocytes Apoptosis Via Improving Mitochondrial Function
Junqian WANG ; Lingshan ZHOU ; Youqi ZHU ; Chengcheng YI ; Ming BAI
Chinese Circulation Journal 2024;39(1):75-82
Objectives:To explore the effect and possible mechanisms of mild hypothermia on interferon(IFN)-α2b-induced AC16 cardiomyocytes apoptosis. Methods:Cardiomyocytes were stimulated in ordinary temperature and mild hypothermia by IFN-α2b under different concentrations for different times.Proliferation activity of cardiomyocytes was detected by CCK-8 assay.Apoptosis was detected by flow cytometry technique.The effects of different interventions on mitochondrial morphology were examined using Mito-Tracker Green and laser scanning confocal microscope,respectively.The mitochondrial membrane potentials under different intervention conditions were detected by flow cytometry.The fusion of dynamin-related protein 1(Drp1)and mitochondria,and the effects of different interventions on the mitochondria was examined by Drp1 or mitochondrial fluorescent probes and laser scanning confocal microscope.The effects of different intervention conditions on the protein expression level of Phospho-Drp1(p-Drp1)Ser616,Drp1,cleaved poly ADP-ribose polymerase1(cleaved-PARP1),poly ADP-ribose polymerase1(PARP1)were detected by Western blot. Results:CCK-8 assay and flow cytometry results showed that IFN-α2b inhibited the proliferation and enhanced the apoptosis of AC16 cardiomyocytes in a time and dose-dependent manner,these effects could be attenuated by mild hypothermia.Mito-Tracker Green,laser scanning confocal microscope and flow cytometry results showed that the extent of damage of mitochondria with different interventions were attenuated in the setting of mild hypothermia as compared with ordinary temperature.The morphology of mitochondria remained intact and the mitochondrial membrane potentials were the highest in mild hypothermia group.Injured AC16 cardiomyocytes released Drp1 from cytoplasm to mitochondria and increased mitochondrial fission,these effects were abolished after mild hypothermia.p-Drp1 Ser616/Drp1 ratio and cleaved-PARP1/PARP1 ratio were decreased after mild hypothermia,and above effects could be reversed by mitochondrial division inhibitor-1(Mdivi-1)pretreatment. Conclusions:Mild hypothermia inhibits IFN-α2b-induced AC16 cardiomyocytes apoptosis via improving mitochondrial function.

Result Analysis
Print
Save
E-mail