1.Metallothionein-I/II in brain injury repair mechanism and its application in forensic medicine.
Dong LI ; Ru-bo LI ; Ju-li LIN
Journal of Forensic Medicine 2013;29(5):365-377
Metallothionein (MT) is a kind of metal binding protein. As an important member in metallothionein family, MT-I/II regulates metabolism and detoxication of brain metal ion and scavenges free radicals. It is capable of anti-inflammatory response and anti-oxidative stress so as to protect the brain tissue. During the repair process of brain injury, the latest study showed that MT-I/II could stimulate brain anti-inflammatory factors, growth factors, neurotrophic factors and the expression of the receptor, and promote the extension of axon of neuron, which makes contribution to the regeneration of neuron and has important effect on the recovery of brain injury. Based on the findings, this article reviews the structure, expression, distribution, adjustion, function, mechanism in the repair of brain injury of MT-I/II and its application prospect in forensic medicine. It could provide a new approach for the design and manufacture of brain injury drugs as well as for age estimation of the brain injury.
Animals
;
Astrocytes/metabolism*
;
Brain/metabolism*
;
Brain Injuries/pathology*
;
Cytokines/metabolism*
;
Forensic Medicine/methods*
;
Gene Expression Regulation/drug effects*
;
Humans
;
Metallothionein/physiology*
;
Neurons/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Oxidative Stress/drug effects*
2.Effect of metallothionein on myocyte apoptosis and energy supply of isolated rabbit heart muscle during perfusion with ropivacaine.
Yao-min ZHU ; Zu-yi YUAN ; Xiang LIU ; Gui-xia JING
Journal of Southern Medical University 2011;31(8):1425-1427
OBJECTIVE[corrected] To assess the effects of metallothionein on myocyte apoptosis and energy supply of isolated rabbit heart muscle during perfusion with ropivacaine..
METHODSSixty New Zealand white male rabbits were randomized into 3 equal groups. In group I, the rabbits received a intreaperitioneal injection of distilled water 24 h before isolation of the heart with perfusion by Langendoff model; in group II, distilled water was injected intreaperitioneally, and 24 h later the heart was isolated and perfused with Langendoff model and ropivacaine; in group III, 3.6% ZnSO(4) was injected intreaperitioneally and the isolated heart was perfused with Langendoff model and ropivacaine. The myocardial metallothionein content, myocyte apoptosis, and myocardial ATP, ADP and AMP content were detected.
RESULTSThe myocardial metallothionein content was significantly higher in group III than in the other two groups; the percent of myocyte apoptosis was the highest in group II, and was significantly higher in group III than in group I. The myocardial content of ATP was the highest in group I, and was significantly higher in group III than in group II.
CONCLUSIONMetallothionein can significantly inhibit myocyte apoptosis and alleviate energy supply disorder induced by ropivacaine.
Amides ; pharmacology ; Animals ; Apoptosis ; drug effects ; Energy Metabolism ; drug effects ; In Vitro Techniques ; Male ; Metallothionein ; pharmacology ; Myocardium ; cytology ; metabolism ; Myocytes, Cardiac ; cytology ; metabolism ; Perfusion ; Rabbits
3.Apoptosis inducing effect of tanshinone II(A) on human nasopharyngeal carcinoma CNE cells.
Zhikai DAI ; Dalin HUANG ; Jingshan SHI ; Limei YU ; Qin WU ; Qing XU
China Journal of Chinese Materia Medica 2011;36(15):2129-2133
OBJECTIVETo investigate anticancer effect and potential mechanism of tanshinone II(A) (Tan II(A)) on human nasopharyngeal carcinoma cell line CNE cells.
METHODAntiproliferative effect of Tan II(A) on CNE cells was evaluated by morphological examination, cell growth curves, colonial assay and MTT assay. Apoptosis detection was carried out using Hoechest 33258 and PI double-dyeing method. Intracellular Ca2+ concentration and mitochondria membrane potential were detected by fluorospectrophotometer. Bad and MT-1A transcript analysis in CNE cells was analyzed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR).
RESULTTan II(A) could inhibit CNE cells proliferation in dose- and time-dependent manner. 50% inhibiting concentration of Tan II(A) on CNE cells in 24, 48, 72 h was 45.7, 24.8, 3.3 mg x L(-2), respectively. Typical apoptotic morphology such as chromatin aggregation was observed in CNE cells with Tan II(A) treated for 24 h, and the apoptotic inducing effect was in a dose-dependent manner. After treated with Tan II(A), intracellular Ca2+ concentration of CNE cells was increased, mitochondria membrane potential of the cells was decreased, relative mRNA level of Bad and MT-1A was up-regulated.
CONCLUSIONTan II(A) had anticancer effect on CNE cells through apoptosis via calcineurin-dependent pathway and MT-1A downregulation.
Antineoplastic Agents, Phytogenic ; pharmacology ; Apoptosis ; drug effects ; Calcium ; metabolism ; Carcinoma ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Diterpenes, Abietane ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Gene Expression Regulation, Neoplastic ; drug effects ; Humans ; Membrane Potential, Mitochondrial ; drug effects ; Metallothionein ; genetics ; Nasopharyngeal Neoplasms ; genetics ; metabolism ; pathology ; Signal Transduction ; drug effects ; bcl-Associated Death Protein ; genetics
4.Attenuation effects of compatible medicines on arsenical and lead toxicity of badu shengji san.
Yanli LU ; Rong HE ; Bo PENG ; Jie GAO ; Jianrong LI
China Journal of Chinese Materia Medica 2011;36(15):2118-2123
Badu Shengji San(BDSJS) is a traditional Chinese medicine (TCM) used for drawing out toxin, eliminating suppuration and promoting granulation. Toxic minerals such as arsenic and lead are the two most important components of BDSJS. Previous hypothesis indicated that according to the compatibility theory of TCM, the toxicity of the entire BDSJS was weaker than that of arsenic and lead, respectively. In the present study, SD rats with injured skin were treated with distilled water and different composition of BDSJS (complete formulations, compatible herbs, mineral medicine containing arsenic and lead, mineral medicine containing arsenic and mineral medicine containing lead) once a day for consecutive 2 weeks. Kidney coefficient and urinary beta-N-acetyl glucosidase (NAG) were used as the indicators of renal toxicity and the content of malondiadehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), glutathione (GSH) and metallothionein (MT) in the renal tissue were measured. Our data showed that kidney coefficient, the severity of renal pathological lesion and MT level in the kidney of the entire BDSJS group decreased significantly compared with arsenic and lead group. Additionally, the NAG content of the entire BDSJS group had the decreased trend. The kidney CuZn-SOD level of the entire BDSJS group had the increased trend, but the MDA, GSH-PX, GSH level had no obvious difference. Our results suggested that compatible herbs in BDSJS relieved renal injury induced by arsenic and lead, and the attenuation mechanism may be related to MT and CuZn-SOD, but not to MDA, GSH-PX and GSH directly.
Animals
;
Arsenic
;
toxicity
;
Body Weight
;
drug effects
;
Drugs, Chinese Herbal
;
pharmacology
;
toxicity
;
Glutathione
;
metabolism
;
Glutathione Peroxidase
;
metabolism
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Lead
;
toxicity
;
Male
;
Malondialdehyde
;
metabolism
;
Metallothionein
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Skin
;
drug effects
;
Superoxide Dismutase
;
metabolism
5.Effects of cadmium on zinc metabolism and its functions in rats.
Ke-yue WANG ; Tai-yi JIN ; Hong LI ; Xiu-quan SHI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2007;25(2):77-79
OBJECTIVETo explore the effects of cadmium on zinc metabolism and its function and the protective effects of pre-supplement zinc to it.
METHODSNS or different doses of CdCl(2) were injected to pregnant dams intraperitoneally at the 7th, 10th and 13th day of gestation respectively. At the 21st pregnant day embryos were taken out from the pregnant rats. Another rats of pre-supplement zinc or no pre-supplement zinc group were injected different doses of CdCl(2) or NS intraperitoneally after 6 days. After 24 hours the rats were killed. The contents of Cd, Zn and relative biomarkers of effect of liver, brain or serum were detected in both embryos and adult rats.
RESULTSCompared with control group, the contents of T-AOC and Ach were significantly reduced in the Cd treatment group in the embryonic brains, the activity of AKP in the embryonic liver tissues was decreased, and The Cd content was increased significantly in embryonic liver and was negatively correlated with the Zinc content in the embryonic brain. There were no differences in the activities of SOD and AKP and the contents of Cd and MDA between pre-supplement Zn control group and no supplement Zn control group, but higher content of Zn in liver and serum in the former. Compared with no supplement Zn control group, there were higher contents of Cd in liver and serum, Zn and MDA in liver, lower activities of SOD in liver and AKP in liver and serum, and lower content of Zn in serum in the Cd treatment groups. Pre-supplement Zn significantly increase the content of Zn and the activities of SOD in liver and AKP in serum, decrease the content of MDA in liver and Cd in serum resulted by Cd treatment only. The content of Zn and the activity of AKP in serum and the activities of SOD and AKP in liver were negatively correlated with the content of Cd in corresponding tissue significantly.
CONCLUSIONCadmium can enter embryo and enter brain by permeating the brain-blood barrier during the embryonic period. The decrease of AKP activity, some neural transmitter and capacity of anti-lipid peroxidation that are related with Zn in embryos are caused when the pregnant rats are administered with cadmium. Cd can inhibits the activities of AKP and SOD in liver, and the activity of AKP in serum respectively, and increase the content of MDA in liver dose-dependently. The effects induced by cadmium are related with zinc abnormal distribution. Pre-supplement zinc to rats can antagonize these effects in different degree.
Animals ; Cadmium ; toxicity ; Female ; Liver ; metabolism ; Male ; Maternal Exposure ; Metallothionein ; metabolism ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Zinc ; metabolism ; pharmacology
6.Effects of metallothionein on isolated rat heart.
Zhongdong, SUN ; Jiahong, XIA ; Nianguo, DONG ; Xinling, DU ; Yifan, CHI ; Tienan, YANG ; Chenyuan, YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(4):448-50
To investigate the effects of metallothionein (MT) on isolated rat heart, 16 Wistar rats were randomly divided into 2 groups. In control group (group C), distilled water was injected intraperitoneally and 24 h later isolated hearts were perfused with Langendorff and stored at 4 degrees C for 3 h with histidine-tryptophan-ketoglutarate (HTK) solutions, and then isolated hearts were perfused for 2 h by Langendorff. In experimental group (group E), 3.6% ZnSO(4) was injected intraperitoneally, 24 h later isolated hearts were perfused by Langendorff and stored at 4 degrees C for 3 h with HTK solutions, and then the isolated hearts were perfused for 2 h with Langendorff. MT content, the recovery of hemodynamics, myocardial water content (MWC), lactate dehydrogenase (LDH) and creatine kinase (CK) leakage, adenosine triphosphate (ATP) and malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, myocardial cell Ca(2+) content, Ca(2+)-ATPase activity of mitochondria ([Ca(2+)-ATPase](m)) and its Ca(2+) content ([Ca(2+)](m)), synthesizing ATP activity of mitochondria ([ATP](m)), and the ultrastructure of cells were examined. There were a significant increase in group E in hemodynamic recovery, ATP content, SOD activity, [Ca(2+)-ATPase](m) activity, [ATP](m) activity, and substantial reduction in MWC, LDH and CK leakage, MDA content, myocardial cell Ca(2+) content, [Ca(2+)](m) content, and the ultrastructural injury were obviously milder than that of group C. This study demonstrated that MT has protective effects on isolated rat heart.
Cardiotonic Agents/*pharmacology
;
Creatine Kinase/*metabolism
;
L-Lactate Dehydrogenase/metabolism
;
Metallothionein/biosynthesis
;
Metallothionein/*pharmacology
;
Myocardium/*metabolism
;
Myocardium/ultrastructure
;
Random Allocation
;
Rats, Wistar
;
Superoxide Dismutase/metabolism
;
Zinc Sulfate/pharmacology
8.Metallothionein 1 isoform gene expression induced by cadmium in human peripheral blood lymphocytes.
Xiu-Li CHANG ; Tai-Yi JIN ; Yuan-Fen ZHOU
Biomedical and Environmental Sciences 2006;19(2):104-109
OBJECTIVETo study the gene expression of metallothionein 1 (MT-1) isoforms in human peripheral blood lymphocytes (HPBLs).
METHODSThe expression of mRNA representing the seven active MT-1 genes was determined in HPBLs by quantitative RT-PCR before and after exposure to cadmium.
RESULTSBasal expressions of MT-1X, and MT-1A in HPBLs were similar to expression of housekeeping gene. In contrast, the basal gene expressions of MT-1H, 1F, 1E, and 1G were a little transcripts in human HPBLs. No signal was detected for MT-1B. There was a sex difference (P < 0.05). in basal gene expression of MT-1E. The levels of gene expression of MT-1A, 1E, 1F, 1G, 1H, and 1X increased, but the level of MT-1B did not increase after exposure to cadmium.
CONCLUSIONSGene expressions of MT-1G, MT-1H, MT-1F, and MT-1X in HPBLs can be used as a potential biomarker of cadmium exposure.
Adult ; Biomarkers ; metabolism ; Cadmium ; pharmacology ; Cells, Cultured ; DNA Primers ; Female ; Gene Expression Regulation ; drug effects ; Humans ; Lymphocytes ; metabolism ; Male ; Metallothionein ; genetics ; metabolism ; Protein Isoforms ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction
9.Association of anti-obesity activity of N-acetylcysteine with metallothionein-II down-regulation.
Jae Ryong KIM ; Hyung Ho RYU ; Hyun Jin CHUNG ; Joo Hyun LEE ; Sang Woon KIM ; Woo Hyung KWUN ; Suk Hwan BAEK ; Jung Hye KIM
Experimental & Molecular Medicine 2006;38(2):162-172
People with upper body or visceral obesity have a much higher risk of morbidity and mortality from obesity-related metabolic disorders than those with lower body obesity. In an attempt to develop therapeutic strategies targeting visceral obesity, depot- specific differences in the expression of genes in omental and subcutaneous adipose tissues were investigated by DNA array technology, and their roles in adipocyte differentiation were further examined. We found that levels of metallothionein-II (MT-II) mRNA and protein expression were higher in omental than in subcutaneous adipose tissues. The study demonstrates that MT-II may play an important role in adipocyte differentiation of 3T3L1 preadipocytes, and that N-acetylcysteine (NAC) inhibits the adipocyte differentiation of 3T3L1 cells by repressing MT-II in a time- and dose-dependent manner. Furthermore, the intraperitoneal administration of NAC to rats and mice resulted in a reduction of body weights, and a marked reduction in visceral fat tissues. These results suggest that MT-II plays important roles in adipogenesis, and that NAC may be useful as an anti-obesity drug or supplement.
Viscera/drug effects/metabolism
;
Time Factors
;
Subcutaneous Fat/drug effects
;
Rats, Sprague-Dawley
;
Rats
;
Middle Aged
;
Mice, Inbred C57BL
;
Mice
;
Metallothionein/*genetics/metabolism/physiology
;
Male
;
Humans
;
Female
;
Down-Regulation/drug effects/genetics
;
Dose-Response Relationship, Drug
;
Cell Differentiation/drug effects
;
Body Weight/drug effects
;
Anti-Obesity Agents/*pharmacology
;
Animals
;
Aged
;
Adipose Tissue/cytology/drug effects/metabolism
;
Adipocytes/cytology/drug effects/metabolism
;
Acetylcysteine/*pharmacology
;
3T3-L1 Cells
10.Application of metallothionein gene isoforms expression as biomarkers in cadmium exposure.
Xiu-li CHANG ; Tai-yi JIN ; Liang CHEN ; Li-jian LEI ; Yuan-fen ZHOU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2006;24(1):12-15
OBJECTIVETo investigate the feasibility of metallothionein (MT) gene expression level in human peripheral blood lymphocytes (HPBLs) as a biomarker in cadmium exposure.
METHODSThe MT gene expression level in HPBLs of workers exposed to cadmium was examined using RT-PCR technique, and the exposure assessment and effect assessment were conducted in exposed workers.
RESULTSThe basal MT-1A, IE, IF, IX and MT-2A expression level in workers exposed to cadmium were significantly higher than those in the control group (P < 0.05). The basal MT-1A, IE, IF, IX and MT-2A expression level would be significantly increased with the increase of the blood cadmium (BCd) level (P < 0.05). There was a trend of increase for the mRNA expression of the basal MT-1A, 1E, IF, IX, MT-2A, especially for the mRNA expression of MT-1A and MT-2A (P < 0.05) with the increase of the level of the urine cadmium (UCd). There was a good dose-response relationship between basal MT-1A expression and UCd. The basal MT-1A, IE, IF, IX and MT-2A expression level were significantly correlated with BCd (P < 0.05) while the basal MT-1A, IF and MT-2A expression level were significantly correlated with UCd (P < 0.05). There were dose-effect relationships of BCd to the basal MT-1E, MT-1F, MT-1X and MT-2X expression level respectively and there were also dose-effect relationships of UCd, beta(2)-MG and the urine metallothionein to the basal MT-1A expression.
CONCLUSIONThe expression of the MT gene isoforms in HPBLs can serve as the biomarker for the cadmium exposure and MT-1A can also serve as the effective biomarkers for the cadmium-induced renal toxicity.
Adult ; Biomarkers ; metabolism ; Cadmium ; metabolism ; pharmacology ; Dose-Response Relationship, Drug ; Female ; Gene Expression ; Humans ; Lymphocytes ; metabolism ; Male ; Metallothionein ; biosynthesis ; genetics ; Occupational Exposure ; Protein Isoforms ; biosynthesis ; RNA, Messenger ; genetics
Result Analysis
Print
Save
E-mail