1.Effect of Berberine-Baicalin Combination on Fecal Microbiota Transplantation-induced Type 2 Diabetes Mellitus Due to Internal Accumulation of Dampness-heat in Mice from Perspectives of Gut Microbiota and Metabolomics
Mengjie CHEN ; Yimin LIU ; Yun ZHOU ; Keming YU ; Min XIA ; Hongning LIU ; Yanhua JI ; Zhijun ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):52-64
ObjectiveTo investigate the mechanisms by which the combination of berberine (BBR) and baicalin (BAI) ameliorates type 2 diabetes mellitus (T2DM) due to internal accumulation of dampness-heat from the perspectives of gut microbiota and metabolomics. MethodsAntibiotics were used to induce pseudo-sterile mice. Thirty pseudo-sterile mice were randomized into a normal fecal microbiota transplantation group (n=10) and a T2DM (syndrome of internal accumulation of dampness-heat) fecal microbiota transplantation group (n=20). The mice were then administrated with suspensions of fecal microbiota from healthy volunteers and a patient with T2DM due to internal accumulation of dampness-heat by gavage, respectively. Each mouse received 200 µL suspension every other day for a total of 15 times to reshape the gut microbiota. The T2DM model mice were then assigned into a model group (n=8) and a BBR-BAI group (n=11). BBR was administrated at a dose of 200 mg·kg-1, and BAI was administrated in a ratio of BBR-BAI 10∶1 based on preliminary research findings. The administration lasted for 8 consecutive weeks. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin (INS), triglycerides (TG), total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels were measured to evaluate the effects of the BBR-BAI combination on glucose and lipid metabolism and liver function in T2DM mice. Hematoxylin-eosin staining was employed to observe pathological changes in the colon tissue. The expression of claudin-1, zonula occludens-1 (ZO-1), and occludin in the colon tissue was determined by Western blot. Real-time quantitative polymerase chain reaction(Real-time PCR) was employed to assess the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the colon tissue. The fecal microbiota composition and differential metabolites were analyzed by 16S rRNA sequencing and ultra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF-MS), respectively. ResultsThe BBR-BAI combination lowered the FBG, HbA1c, and INS levels (P<0.05, P<0.01) and alleviated insulin resistance (P<0.01) in T2DM mice. Additionally, BBR-BAI elevated the levels of ZO-1, occludin, and claudin-1 (P<0.05, P<0.01) and down-regulated the expression levels of TNF-α, IL-1β, and IL-6 in the colon (P<0.05, P<0.01). The results of 16S rRNA sequencing showed that BBR-BAI increased the relative abundance of Ligilactobacillus, Phascolarctobacterium, and Akkermansia (P<0.05), while significantly decreasing the relative abundance of Alistipes, Odoribacter, and Colidextribacter (P<0.05). UPLC-Q-TOF-MS identified 28 differential metabolites, which were primarily involved in arachidonic acid metabolism and α-linolenic acid metabolism. ConclusionBBR-BAI can ameliorate T2DM due to internal accumulation of dampness-heat by modulating the relative abundance of various bacterial genera in the gut microbiota and the expression of fecal metabolites.
2.A qualitative study on the hospice care needs of patients with end-stage renal disease based on the 6S model
Chinese Medical Ethics 2025;38(3):321-327
ObjectiveTo investigate the hospice care needs of patients with end-stage renal disease, providing a reference for the implementation of hospice care in patients with end-stage renal disease. MethodsSemi-structured interviews were conducted with 13 patients with end-stage renal disease based on the 6S model, using the phenomenological method in qualitative study. Themes were refined using Colaizzi’s 7-step analysis method. ResultsSix themes were summarized, including the need for symptom control; psychological counseling; social support; maintaining self-subjectivity; expressing end-of-life wishes; and alleviating family grief. ConclusionThe hospice care needs of patients with end-stage renal disease are diverse. Addressing their discomfort symptoms, strengthening communication, and understanding the wishes and needs of patients and their families are conducive to improving the quality of life of patients with end-stage renal disease.
3.Key Information Research and Modern Clinical Application of Famous Classical Formula Yanghetang
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Shunxi WANG ; Ziwen WANG ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):238-246
Through data collection and collation combined with bibliometrics, this study conducted a series of textual research on Yanghetang, such as the name and origin, the evolution of prescription composition and modern clinical application. Yanghetang was first recorded in Bencao Yidu of WANG Ang in the Qing dynasty. In addition to Yanghetang, there were 3 bynames of Jiawei Yanghetang, Quanshengji Yanghetang and Zhenjun Yanghetang. Regarding the composition of the formula, a total of 4 versions of Yanghetang were collected. The first version is the 5 medicines version of Cervi Cornus Colla, Rehmanniae Radix Praeparata, Cinnamomi Cortex, Zingiberis Rhizoma and Ephedrae Herba in Bencao Yidu. The second version is the 7 medicines version of Waike Zhengzhi Quanshengji, changing Zingiberis Rhizoma to Zingiberis Rhizoma Praeparatum Carbonisata(ZRPC) and adding Sinapis Semen and Glycyrrhizae Radix et Rhizoma(GRR) on the basis of Bencao Yidu, and most of the Yanghetang is of this version. The third version is the 6 medicines version of Wushi Yifang Huibian, that is, on the basis of Bencao Yidu, Zingiberis Rhizoma is changed into ZRPC, and Sinapis Semen is added. The fourth version is the 6 medicines version in Yifang Jiedu, that is, on the basis of Bencao Yidu, Zingiberis Rhizoma is changed into Zingiberis Rhizoma Praeparatum, and GRR Praeparata cum Melle is added. Regarding the dose of Yanghetang, the doses of the medicines in Waike Zhengzhi Quanshengji was converted into the modern doses as follows:37.3 g of Rehmanniae Radix Praeparata, 1.87 g of Ephedrae Herba, 11.19 g of Cervi Cornus Colla, 7.46 g of Sinapis Semen, 3.73 g of Cinnamomi Cortex, 3.73 g of GRR, and 1.87 g of ZRPC. The origins of the above medicines are consistent with the 2020 edition of Chinese Pharmacopoeia. The processing specification of Rehmanniae Radix Praeparata is steaming method, ZRPC is ginger charcoal, Sinapis Semen is the fried products, and the rest of the medicines are raw products. The decoction method was verified by the decoction method in Chonglou Yuyao, which is similar in the time, and it is recommended that the above medicines should be added with 600 mL of water, decocted to 100 mL, and taken warmly 30 min after meal. For each dose, it is recommended to use 1-3 doses per day according to the doctor's advice in combination with clinical practice. The diseases involved in the ancient applications involved 42 diseases in 11 departments, including orthopedics, dermatology and gynecology, which were dominated by Yin-cold syndrome. However, the diseases involved in modern research also include 148 related diseases in 10 departments, such as orthopedics, obstetrics and gynecology, which is consistent with the ancient books. In recent years, the research hotspots of Yanghetang have focused on more than 10 fields, including osteoblasts, malignant tumors, wound healing, traditional Chinese medicine fumigation and so on, which are widely used. It is suitable for comprehensive research and development because of its rational formula composition, clear origin, processing and decoction method, and wide clinical application.
4.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
5.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
6.Textual Research on Lianggesan from Ancient Literature and Its Modern Clinical Application
Weilu NIU ; Chengqi LYU ; Mengjie YANG ; Shunxi WANG ; Jingkang QIAO ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Jianwei LI ; Gang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):223-234
Lianggesan was first recorded in Taiping Huimin Heji Jufang, which was composed of Rhei Radix et Rhizoma, Natrii Sulfas, Gardeniae Fructus, Forsythiae Fructus, Scutellariae Radix, Glycyrrhizae Radix et Rhizoma(GRR), Menthae Haplocalycis Herba, Lophatheri Herba and Mel. It was clinically applied to treat fire-heat syndrome in the upper and middle Jiao, and the curative effect was positive. In this study, the bibliometric method was used to conduct a detailed textual research on the formula name, medicinal composition, dosage evolution, origin and processing, functional indications and other aspects of Lianggesan. Research revealed that Lianggesan has six other names, such as Lianqiao Yinzi, Lianqiao Jiedusan, Jufang Lianggesan, Jiegu Lianggesan, Hejian Lianggesan and Qingji Lianggesan. Based on the edition of Taiping Huimin Heji Jufang, an analysis of the evolution of its formula composition revealed that the missing Chinese medicines were predominantly bamboo leaves and honey, while the added Chinese medicines were primarily supplements introduced to address changes in disease manifestations. After textual research, the dosage for one dose of Lianggesan from Taiping Huimin Heji Jufang was as follows:826 g of Rhei Radix et Rhizoma, 826 g of Natrii Sulfas, 826 g of GRR, 413 g of Gardeniae Fructus, 413 g of Menthae Haplocalycis Herba, 413 g of Scutellariae Radix, and 1652 g of Forsythiae Fructus. Decocting method was as following:Grinding the Chinese medicines into coarse powder(2-4 mm), taking 8.16 g per dose, adding 300 mL of water, along with 2 g of Lophatheri Herba and 5 g of Mel, and decocting to 140 mL. The residue was removed and taken warmly 30 min after meals. It was recommended to take it three times daily until improvement was achieved. The origins of the 9 Chinese medicines were consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. Except for GRR, which required single frying(stir-frying), the remaining medicines were all raw products. The description of the function of this formula in ancient books was summarized as purging fire and promoting bowel movements, clearing heat from the upper body and purging the lower body, and the main syndromes included facial redness, tongue swelling, red eyes, etc. In modern applications, the formula is primarily used for respiratory and digestive system diseases, including acute lung injury, chronic obstructive pulmonary disease, herpetic angina and aphthous stomatitis, covering 142 types of diseases. In summary, this paper can provide a basis for further research and development of Lianggesan through the literature review and key information combing.
7.Relationship of parental anger expression and symptoms in children with oppositional defiant disorder
Feifei SI ; Ting HE ; Liangliang YANG ; Mengjie ZHAO ; Min DONG ; Lu LIU ; Xiuyun LIN
Chinese Mental Health Journal 2024;38(3):254-259
Objective:This study is to investigate the relationship of parental anger expression and symptoms in children with oppositional defiant disorder(ODD).Methods:Forty-six children with ODD and 46 age-gender-matched normal children participated.The Diagnostic and Statistical Manual of Mental Disorders,Fifth Edition(DSM-5),guided the diagnoses.Parental anger expression and children's anger management were assessed using the State-Trait Anger Expression Inventory-2 and Children Emotion Management Scales.Results:ODD symptoms were directly predicted by maternal anger index(AI)(β=0.13,P<0.05)and anger expression-out(AX-O)(β=0.25,P<0.05).Children's anger cope(AC)played a mediating function to maternal AI through ODD symptoms,occupying 13%of the total effect;their AC and anger dysregulation(AD)played a mediating function to maternal AX-Othrough ODD symptoms,accounting for 29%and 18%of the total effect,respectively.Conclusion:It sug-gests that anger cope and anger dysregulation in children with oppositional defiant disordermay may play a media-ting role between maternal anger expression and oppositional defiant disorder symptoms.
8.Impact of iodine nutritional status changes on thyroid function in the elderly in high iodine areas of Jiangsu province: A serial cross-sectional surveys
Mengjie ZHANG ; Lina ZHANG ; Weinuo MI ; Yu SUN ; Tonggao SHEN ; Guofang CHEN ; Chao LIU ; Shuhang XU
Chinese Journal of Endocrinology and Metabolism 2024;40(1):37-43
Objective:To investigate the alteration in iodine nutritional status and influence on thyroid function in the elderly aged≥65 years following water source modification in high iodine areas.Methods:Data from Yaoji Town, Xuzhou, Jiangsu(an area with high iodine due to water sources) of the national epidemiological survey on thyroid diseases, iodine nutrition, and diabetes(TIDE study) in 31 provinces and cities in China from 2015 to 2017 were utilized. Additionally, data from the screening, monitoring, and intervention on thyroid diseases(TOPS study) in the elderly(≥65 years) in Shunhe Town, Suqian, Jiangsu(an area with iodine levels exceeding the recommended amount), and Yaoji Town, Xuzhou from May to August 2021, are included. Each subject completed a questionnaire, physical examination, laboratory tests and thyroid ultrasound examinations. A total of 2 717 subjects aged≥65 years were included, including group 1, 258 subjects in TIDE study; Group 2, 1 313 subjects in TOPS Xuzhou area; Group 3, 1 146 subjects in TOPS Suqian area.Results:The urinary iodine concentration(UIC) in group 2 was significantly lower than that in group 1 [(235.16±67.09)μg/L vs (491.58±384.93)μg/L, P<0.001], but no significant difference compared with group 3 [(235.16±67.09) μg/L vs(231.62±66.11) μg/L, P>0.05]. The serum TSH level in group 2 was significantly lower than that in group 1 [(2.92±5.14)μIU/mL vs (4.15±9.19)μIU/mL, P<0.001]. Compared with group 2 and 3, the prevalence of subclinical hypothyroidism in the elderly in group 1 was the highest(22.48% vs 10.13% and 8.12%, P<0.001). TSH levels were linearly correlated with age in both excessive iodine and more than adequate iodine nutrition areas. TSH level was gradually increased with age. Conclusion:The alteration in TSH levels among the elderly is notably linked to both aging and iodine status. The prevalence of hypothyroidism in the elderly can be significantly reduced when the iodine nutrition status of the elderly returns to normal.
9.Analysis of a case of perinatal anaphylactic shock caused by esketamine
Liangfen WANG ; Mengjie HE ; Man LIU ; Yue ZHAO
China Pharmacy 2024;35(18):2299-2303
OBJECTIVE To provide a reference for medical staff to timely identify and treat perinatal anaphylactic shock. METHODS The clinical pharmacists participated in the rescue process of anaphylactic shock caused by esketamine during cesarean section anesthesia in a full-term pregnant patient at the Department of Obstetrics and Gynecology of Sichuan Provincial Maternity and Child Health Care Hospital. By consulting the relevant drug instructions and searching the relevant literature, clinical pharmacists assisted physicians in identifying anaphylactic shock and amniotic fluid embolism, analyzing the correlation between the drugs used and adverse reactions, and providing medication education. RESULTS The patient developed hypoxemia and hypotension after anesthesia, and there was no coagulation dysfunction. After symptomatic treatment with adrenaline, the condition rapidly improved, so it was diagnosed as anaphylactic shock. Based on the patient’s medication use and the characteristics of adverse reactions, combined with the National Adverse Drug Reaction Monitoring Center’s criteria for determining the association between drugs and adverse reactions and Naranjo’s evaluation scale, it was comprehensively determined that the suspected allergenic drug causing anaphylactic shock was esketamine. The clinical pharmacist informed the patient that she must inform the physician of the relevant medications for this severe allergic reaction during her later visits. The patient recovered and was discharged on the 6th day after cesarean section. CONCLUSIONS The clinical manifestations of anaphylactic shock and amniotic fluid embolism are similar, and careful differentiation is needed in clinical practice; if a patient experiences a systemic allergic reaction caused by drugs, the suspected drugs should be stopped promptly and effective symptomatic treatment should be taken immediately to delay or terminate disease progression and ensure the patient’s life safety.
10.Tumor mechanomedicine
Hui GUO ; Yusheng HE ; Mengjie LIU ; Bo CHENG ; Feng XU
Chinese Journal of Oncology 2024;46(6):536-548
Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of "Tumor Mechanomedicine". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.

Result Analysis
Print
Save
E-mail