1.Isolation,culture and differentiation of human urine-derived stem cells into smooth muscle cells
Jiahui CHEN ; Xiaoqi DAI ; Yangang XU ; Yuanchao LI ; Mei HUANG ; Yifei ZHAN ; Yuxuan DU ; Liuqiang LI ; Yaochuan GUO ; Jun BIAN ; Dehui LAI
Chinese Journal of Tissue Engineering Research 2025;29(19):4076-4082
BACKGROUND:Traditional methods of urinary tract reconstruction are limited by donor scarcity,high complication rates,and suboptimal functional recovery.Tissue engineering strategies offer new directions in this field.Since the urinary tract is mainly composed of muscle tissue,the key is to find suitable seed cells and efficiently induce them to differentiate into smooth muscle cells.Comparative studies on the efficacy of different smooth muscle cell induction regimens are still lacking. OBJECTIVE:To isolate,culture,and identify human urine-derived stem cells,and to compare the effects of two different induction protocols. METHODS:Human urine-derived stem cells were isolated from urine samples of 11 healthy adult volunteers by multiple centrifugations.Surface markers were identified by flow cytometry.The multi-directional differentiation potential of human urine-derived stem cells was verified through osteogenic and adipogenic differentiation.Differentiation was induced by transforming growth factor-β1 or transforming growth factor-β1 combined with platelet derived growth factor for 14 days.Immunofluorescence staining and western blot assay were employed to compare the expression differences of smooth muscle-specific proteins(α-SMA and SM22). RESULTS AND CONCLUSION:(1)Urine-derived stem cells were successfully isolated from the eight urine samples of healthy people.These cells exhibit a"rice grain"-like morphology and possess a robust proliferative capacity.(2)Urine-derived stem cells exhibited high expression of mesenchymal stem cell surface markers(CD73,CD90,and CD44)and extremely low expression of hematopoietic stem cell surface markers(CD34 and CD45).These cells did not express CD19,CD105,and HLA-DR.(3)After osteogenic and adipogenic differentiation,the formation of calcium nodules and lipid droplets was observed,with positive staining results from Alizarin Red S and Oil Red O staining.(4)After 14 days of smooth muscle induction culture,immunofluorescence staining revealed that the smooth muscle differentiation rate of urine-derived stem cells treated with a combination of transforming growth factor-β1 and platelet derived growth factor was significantly higher compared to those treated with transforming growth factor-β1 alone(P<0.005).(5)After 14 days of smooth muscle induction culture,western blot assay further demonstrated that the expression levels of α-SMA and SM22 in the transforming growth factor-β1/platelet derived growth factor group were significantly elevated compared to those in the transforming growth factor-β1 only group(P<0.005).These findings confirm that urine-derived stem cells can be non-invasively isolated using multiple rounds of centrifugation.Compared with transforming growth factor-β1 alone,the combination of transforming growth factor-β1 and platelet derived growth factor can improve the efficiency of inducing urine-derived stem cells to differentiate into smooth muscle cells.
2.Retrospective analysis of adverse events associated with traditional Chinese medicine formula granules and decoction pieces in hospitalized patients using the global trigger tool
Yaxiong LI ; Fusang WANG ; Mei ZHANG ; Jiawei LIN ; Wenge CHEN ; Min HUANG ; Junyan WU
China Pharmacy 2025;36(5):606-611
OBJECTIVE To provide technical support for improving recognition rate of adverse drug events (ADEs) related to traditional Chinese medicine (TCM) formula granules and decoction pieces among inpatient patients. METHODS By referencing the global trigger tool (GTT) whitepaper, literature on adverse reactions to TCM, and expert review opinions, ADE trigger items for TCM formula granules and decoction pieces used in the inpatients were established. GTT was applied to analyze ADEs in inpatients who had used TCM formula granules and decoction pieces in our hospital from August 2013 to August 2023, utilizing the Chinese Hospital Pharmacovigilance System. The effectiveness of GTT and the characteristics of these ADEs were analyzed. RESULTS A total of forty-eight triggers were established, including thirty-two laboratory test indexes, thirteen clinical symptoms, and three antidotes. Among the 1 682 patients included, GTT identified 652 potential ADEs, 284 true positive ADEs,with a trigger rate of 38.76% and a positive predictive value of 43.56%. After review by the auditor, 278 cases of ADEs were finally confirmed, with an incidence rate of 16.53%, significantly higher than the number of spontaneously reported ADEs during the same period (0). The 278 cases of ADEs were mostly grade 1 (223 cases), mainly involving hepatobiliary system, gastrointestinal system, blood- lymphatic system, etc;a total of 219 types of TCMs are involved,and the top five suspected TCMs used at a frequency higher than 1% were Poria cocos, Codonopsis pilosula, Atractylodes macrocephala, fried Glycyrrhiza uralensis, and Scutellaria baicalensis. CONCLUSIONS The established GTT can improve the recognition rate of ADEs for hospitalized patients using traditional Chinese medicine formula granules and decoction pieces.
3.Conbercept and Dexamethasone intravitreal implant in treating diabetic macular edema with different optical coherence tomography types
Mei HU ; Bo LI ; Xinmiao HU ; Yaqi HUANG
International Eye Science 2025;25(4):551-557
AIM: To investigate the efficacy and safety of dexamethasone versus conbercept in the treatment of diabetic macular edema(DME)with different optical coherence tomography(OCT)subtypes.METHODS: A total of 160 DME patients(160 eyes)admitted to our hospital from January 2021 to March 2023 were prospectively selected, and the patients were randomly divided into dexamethasone intravitreal implant group and conbercept group, with 80 cases(80 eyes)in each group, and DME patients were divided into 51 eyes with serous retinal detachment(SRD), 55 eyes with cystoid macular edema(CME), and 54 eyes with diffuse retinal thickening(DRT)according to OCT characteristics. The best corrected visual acuity(BCVA), central macular thickness(CMT), intraocular pressure and adverse reactions were compared before treatment and at 2, 3 and 6 mo postoperatively.RESULTS: There were differences in BCVA, CMT and intraocular pressure between the two groups at 2, 3 and 6 mo compared with those before operation(all P<0.05). There were differences in BCVA, CMT and intraocular pressure between the dexamethasone intravitreal implant group and the conbercept group in the treatment of patients with different types of DME(all P<0.05). The BCVA of patients with DRT and SRD types in the dexamethasone intravitreal implant group was improved at 3 and 6 mo after treatment compared with that in the conbercept group(all P<0.05). At 6 mo after treatment, the CMT of patients with DRT type in the dexamethasone intravitreal implant group was lower than that in the conbercept group(P<0.05). During the follow-up period, none of the patients experienced adverse events such as cataract exacerbation or retinal detachment.CONCLUSION: Both dexamethasone intravitreal implant and conbercept treatment can improve visual function and macular retinal morphology in patients with different OCT subtypes of DME with good safety, but the dexamethasone intravitreal implant is better than conbercept in the treatment of DRT type.
4.Analysis of risk factors for piracetam-associated thrombocytopenia and the establishment of risk prediction model
Tianmin HUANG ; Xingming LU ; Mei ZHENG ; Guizong GUO ; Xin LU ; Yilin LUO ; Yingxia YANG
China Pharmacy 2025;36(10):1226-1231
OBJECTIVE To analyze the risk factors contributing to piracetam-associated thrombocytopenia and develop a predictive model for risk prediction. METHODS The electronic medical record information of inpatients treated with piracetam was collected retrospectively from the First Affiliated Hospital of Guangxi Medical University from January 2021 to December 2023, including gender, age, underlying diseases, combined medication, and laboratory data, etc. Patients were divided into the occurrence group and the non-occurrence group according to whether thrombocytopenia occurred, and the differences in clinical data between the two groups were compared. The independent risk factors were determined through univariate/multivariate Logistic regression analysis. A nomogram was drawn to visually present the independent risk factors, and a risk prediction model was constructed. The predictive efficacy of the model was evaluated using the receiver operating characteristic (ROC) curve, Bootstrap internal validation and calibration curve. RESULTS A total of 224 patients were included, among which 196 cases were in the non- occurrence group and 28 cases in the occurrence group. The incidence of thrombocytopenia was 12.50%. The results of the univariate Logistic regression analysis showed that the proportion of patients using three or more combined antibiotics and the level of serum creatinine in the occurrence group were significantly higher than those in the non-occurrence group, while the level of hemoglobin was significantly lower (P<0.05). The results of the multivariate Logistic regression analysis revealed that the use of three or more combined antibiotics, low hemoglobin level and high serum creatinine level were independent risk factors for piracetam-associated thrombocytopenia (P<0.05). The constructed risk prediction model was LogitP= -1.114+1.256×three or more combined antibiotics-0.017×hemoglobin level+0.009×serum creatinine level. The AUC of the ROC curve of this model was 0.757, and the optimal cut-off value was 0.474; the AUC of the ROC curve of the Bootstrap internal validation was 0.733; the apparent curve and the bias-corrected curve were close to the ideal curve. CONCLUSIONS The use of three or more antibiotics, along with low hemoglobin level and high serum creatinine level, are identified as independent risk factors for piracetam-associated thrombocytopenia. The developed risk prediction model demonstrates good predictive value.
5.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
6.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
7.Role and mechanism of T helper 17 cells/regulatory T cells immune balance regulated by the TGF-β1/Smad signaling pathway mediated in nonalcoholic steatohepatitis
Qian WANG ; Kaiyang LI ; Mei YANG ; Hang ZHANG ; Shengjin ZHU ; Qi ZHAO ; Jing HUANG
Journal of Clinical Hepatology 2025;41(5):942-947
Nonalcoholic steatohepatitis (NASH) is a chronic metabolic disease characterized by hepatocyte fatty degeneration and ballooning degeneration, and it plays an important role in the progression of hepatic steatosis. Recent studies have shown that immune homeostasis imbalance between T helper 17 (Th17) and regulatory T (Treg) cells are closely associated with the pathological process of NASH. Transforming growth factor-β1 (TGF-β1) is a key cytokine for regulating the differentiation and proliferation of Th17/Treg cells, and TGF-β1 binds to its receptor and activates the Smad signaling pathway, thereby regulating the immune balance of Th17/Treg cells and the expression of inflammatory factors and participating in the repair of liver inflammation. This article systematically reviews the molecular mechanism of the TGF-β1/Smad signaling pathway in affecting NASH by regulating the immune balance of Th17/Treg cells, in order to provide a theoretical basis for the research on the pathogenesis of NASH and related treatment strategies.
8.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
9.Astragali Radix Polysaccharide Inhibits Proliferation and Migration of Gastric Cancer Cells by Targeting ID1 and Akt
Peizheng SHI ; Shanshan XIAO ; Xinjiang ZHANG ; Yixiang NIE ; Xianchao WANG ; Jing HUANG ; Jie MEI ; Huaquan LAN ; Tuanyun JI ; Tianyi ZHANG ; Xiaoyong WEI ; Qiaohong YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):96-105
ObjectiveTo explore the regulatory effects and mechanisms of Astragali Radix polysaccharide (APS) on inhibitor of differentiation1 (ID1) and protein kinase B (Akt) in gastric cancer. MethodsImmunohistochemical staining was used to detect the expression of ID1 and Akt in 61 gastric cancer tissue samples and 20 adjacent normal gastric tissue samples. Immunofluorescence was used to detect the localization of ID1 and Akt. The effects of APS at the concentrations of 0.625, 1.25, 2.5, 5, 10, 20 mg·L-1 on the proliferation of gastric cancer MGC-803 cells were examined by the cell counting kit-8(CCK-8) method and the colony formation assay. The target information of APS was retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform and Swiss Target Prediction. Keywords such as gastric cancer, gastric tumor, and stomach cancer were searched against GeneCards, UniProt, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) for the screening of gastric cancer-related targets. The online tool jvenn was used to create the Venn diagram to identify the common targets, and STRING and Cytoscape were used to construct the protein-protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted via R 4.2.2 to predict the potential roles of APS in the development of gastric cancer. The cell scratch assay was employed to assess the effect of APS on the migration of MGC-803 cells. The protein and mRNA levels of ID1 and Akt in the cells treated with APS were determined by Western blot and Real-time PCR, respectively. ResultsCompared with the adjacent normal gastric tissue, the gastric adenocarcinoma tissue showed increased positive expression of ID1 (χ2 =81.00, P<0.01). Immunofluorescence detection showed that ID1 and Akt were mainly located in the cytoplasm of gastric adenocarcinoma cells. Bioinformatics analysis identified 14 common genes shared between APS and gastric cancer. The average degree of protein-protein interaction network nodes was 14.29. GO and KEGG pathway enrichment results showed that ID1 and Akt were significantly enriched in the Rap1 and phosphatidylinositol-3-kinase (PI3K) /Akt signaling pathways. Cell experiments demonstrated that 5-fluorouracil (0.1 mg·L-1) and APS (10, 20 mg·L-1) groups showed decreased cell proliferation, migration, and colony formation. Compared with the control group, 10, 20 mg·L-1 APS inhibited the proliferation of MGC-803 cells (P<0.01), with 10 mg·L-1 APS demonstrating stronger inhibitory effect. In addition, APS at 10, 20 mg·L-1 inhibited the migration (P<0.01) and colony formation (P<0.05, P<0.01) of MGC-803 cells. Compared with the control group, APS at 10, 20 mg·L-1 down-regulated the protein levels of ID1 (P<0.01) and Akt (P<0.05) and the mRNA levels of ID1 (P<0.05, P<0.01) and Akt (P<0.05, P<0.01) in MGC-803 cells. ConclusionID1 and Akt are highly expressed in the gastric adenocarcinoma tissue, which may be related to the development of gastric cancer. APS can down-regulate the protein and mRNA levels of ID1 and Akt to exert anti-tumor effects, which is expected to provide new therapeutic targets for gastric cancer treatment.
10.Exploring Mechanism of Hei Xiaoyaosan Regulating PI3K/Akt Pathway to Improve Learning and Memory Ability of Insomnia Rats with Liver Depression Syndrome Based on Transcriptomics
Jiamin LIU ; Yale WANG ; Hai HUANG ; Yue LI ; Xin FAN ; Pengpeng LIANG ; Shizhao ZHANG ; Mei YAN ; Guiyun LI ; Hongyan WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):114-125
ObjectiveBased on transcriptomics, to explore the mechanism of Hei Xiaoyaosan regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway to improve the learning and memory ability of insomnia rats with liver depression syndrome. MethodsSixty 8-week-old male SD rats were randomly divided into the blank group, model group, eszopiclone group (0.09 mg·kg-1), and low, medium, and high dose groups of Hei Xiaoyaosan (3.82, 7.65, 15.30 g·kg-1), with ten rats in each group. Except for the blank group, the other groups were induced insomnia rat model with liver depression by chronic restraint, tail clamping stimulation and intraperitoneal injection of p-chlorophenylalanine (PCPA). Each treatment group received intragastric administration according to the specified dosage, once a day for 14 consecutive days. The pentobarbital sodium cooperative sleep test, open field test, and Morris water maze test were used to test the sleep quality, depressive-like behavior, and learning and memory abilities of rats. Additionally, enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and nitric oxide (NO) in hippocampus. Hematoxylin-eosin (HE) staining was performed to observe pathological changes of the hippocampal tissue, while terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) was used to evaluate apoptosis of hippocampal neurons. Transcriptomic sequencing technology was employed to identify differentially expressed genes in hippocampus between the model group and the blank group, as well as between the medium-dose group of Hei Xiaoyaosan and the model group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the intersecting genes. Subsequently, the enriched key genes and signaling pathways were analyzed and verified. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was utilized to assess the mRNA expression levels of phosphatase and tensin homolog (PTEN), B-cell lymphoma-2 (Bcl-2)-like protein 11 (BCL2L11), and mitogen-activated protein kinase 1 (MAPK1) in hippocampus, and Western blot was employed to evaluate the protein expressions of PI3K, phosphorylation (p)-PI3K, Akt, p-Akt, Bcl-2, Bcl-2-associated X protein (Bax), and cleaved Caspase-3 in the same tissue. ResultsCompared with the blank group, the model group exhibited a reduction in body weight, an increase in sleep latency, and a decrease in sleep duration (P<0.01). Additionally, rats showed obvious depression-like behavior, and their learning and memory abilities decreased. Furthermore, the contents of 5-HT, GABA, NO, BDNF and GDNF in hippocampus decreased (P<0.01). Histological examination revealed a disorganized cell arrangement in the CA1 region of the hippocampus, characterized by irregular cell shapes, a reduced cell count, deeply stained and pyknotic nuclei, increased vacuolar degeneration, and an elevated apoptosis rate (P<0.01). Compared with the model group, the body weight of the high and medium dose groups of Hei Xiaoyaosan increased, the sleep latency shortened and the sleep time prolonged (P<0.05, P<0.01). Additionally, depression-like behavior and learning and memory abilities of rats were significantly improved, the levels of 5-HT, GABA, NO, BDNF and GDNF in the hippocampus increased (P<0.05, P<0.01). These interventions also ameliorated pathological damage in the hippocampal CA1 area and reduced the apoptosis of hippocampal neurons (P<0.01). Transcriptomic sequencing results indicated that Hei Xiaoyaosan might exert a therapeutic effect by regulating PI3K/Akt pathway through key mRNAs such as PTEN, BCL2L11, and MAPK1. The roles of these key mRNAs and proteins within PI3K/Akt pathway were further validated. In comparison to the blank group, the expression levels of PTEN, BCL2L11 and MAPK1 mRNA in the hippocampus of rats in the model group were increased (P<0.01), while the protein expression levels of p-PI3K, p-Akt and Bcl-2 were decreased (P<0.01), and the protein expression levels of PTEN, Bax and cleaved Caspase-3 were increased (P<0.01). Compared with the model group, the high-dose and medium-dose groups of Hei Xiaoyaosan could down-regulate the expressions of PTEN, BCL2L11 and MAPK1 mRNAs (P<0.01), up-regulate the expressions of p-PI3K, p-Akt and Bcl-2 proteins (P<0.01), and down-regulate the protein expressions of PTEN, Bax and cleaved Caspase-3 (P<0.05, P<0.01). ConclusionHei Xiaoyaosan may regulate PI3K/Akt signaling pathway by down-regulating expressions of key genes such as PTEN, BCL2L11 and MAPK1, and thus improve the learning and memory abilities of insomnia rats with liver depression syndrome.

Result Analysis
Print
Save
E-mail