1.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
2.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
3.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
4.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
5.Effects of intraperitoneal injection of busulfan on metabolic characteristics of spermatogonial stem cells
Zhixin YU ; Xinyu MANG ; Dingfeng ZOU ; Shiying MIAO ; Wei SONG ; Kai LI
Basic & Clinical Medicine 2024;44(6):793-799
Objective To establish a mouse model treated with busulfan and to investigate its effects on the metabo-lism of spermatogonial stem cells(SSCs)of mouse testis.Methods C57BL/6J male mice with age of 8 weeks were injected with 10 mg/kg of busulfan intraperitoneally,then Thy1 positive cells were selected by immunomagnetic beads on day 0,day 5 and day 10 and followed by identification for purity and metabolomic analysis.Results The testis weight ratio decreased and the tissue structure of testis was damaged(P<0.05).Based on the results of principal component analysis(PCA)and partial least squares discriminant analysis(PLS-DA),there were signifi-cant metabolic differences between the sample groups treated for 0 d,5 d and 10 d.A total of 89 differential metabolites were identified including glutathione(GSH),arginine and unsaturatedfatty acids(UFAs),and their important metabolic pathways involved glycerophospholipid metabolism,arginine and proline metabolism.Conclu-sions Affecting the specific metabolic pathway may result in obvious reproductive toxicity and lead to decrease of testicular weight as well as tissue structure damage in mice.Metabolomic analysis showed that the potential repro-ductive toxicity mechanism of SSCs may be related to the metabolic pathways such as lipid metabolism,arginine and proline metabolism.
6.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
7.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
8.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
9.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
10.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.

Result Analysis
Print
Save
E-mail