1.Factors influencing intraocular pressure after femtosecond laser surgery and verification of intraocular pressure correction formulas
Chuanhai ZHOU ; Lijun WANG ; Long WEN ; Haobo FAN ; Zexin YE
International Eye Science 2025;25(3):506-510
AIM: To analyze the factors affecting non-contact intraocular pressure(IOPNCT)measurements after femtosecond laser-assisted small incision lenticule extraction(SMILE), explore the correlation of IOPNCT with central corneal thickness(CCT)and corneal curvature after SMILE, and construct the corresponding regression model which will provide scientific basis for clinical evaluation of the true IOP of patients after SMILE.METHODS: Data from a retrospective analysis of 107 myopic patients(206 eyes)who underwent SMILE and 107 myopic patients(201 eyes)received femtosecond laser-assisted in situ keratomileusis(FS-LASIK)surgery from June 2023 to May 2024 were examined. IOPNCT, CCT, and corneal curvature before surgery and at 1 and 3 mo were collected. The preoperative and postoperative IOPNCT, CCT and corneal curvature were analyzed by ANOVA and Pearson correlation analysis, and multiple linear regression models were constructed to evaluate the association of postoperative changes of IOPNCT, CCT and corneal curvature.RESULTS: There were significant differences in IOPNCT, CCT, and corneal curvature of both SMILE and FS-LASIK patients(all P<0.001), there was no significant difference between two groups and interaction effects(all P>0.05), and the IOPNCT, CCT and corneal curvature at 1 and 3 mo post-surgery were significantly lower than preoperative(all P<0.05). Pearson correlation analysis showed a positive correlation between IOPNCT and CCT at 1 and 3 mo after SMILE(r=0.261, 0.267, all P<0.001), but no significant correlation with corneal curvature(all P>0.05). Multiple linear regression analysis of IOPNCT with CCT and corneal curvature at 1 mo after SMILE indicated that the regression equation was: Y=3.426+0.019X1-0.058X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistical significant difference in the equation(F=7.654, P=0.001); the regression equation for 3 mo after surgery was: Y=2.056+0.020X1-0.038 X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistically significance in the equation(F=7.903, P<0.001). The regression equation of postoperative IOPNCT change(△IOPNCT)and intraoperative cutting corneal thickness(△CCT)and corneal curvature at 1 mo was Y=-2.252+0.008X1+0.587X2(Y represents △IOPNCT, X1 stands for the △CCT, X2 represents the corneal curvature change value), with statistical significant difference in the equation(F=17.550, P<0.001); the regression equation for 3 mo after surgery was: Y=-2.168+0.024X1+0.281X2(Y represents △IOPNCT, X1 represents △CCT, X2 indicates the corneal curvature change values), with statistical significant difference in the equation(F=16.030, P<0.001).CONCLUSION: After SMILE and FS-LASIK surgery, the IOPNCT value of patients was mainly affected by CCT compared with preoperative surgery, and the short-term use of hormone eye drops, fluorometholone, did not cause a significant increase in IOP; both the IOP correction formula at 1 and 3 mo postoperatively can be used clinically to evaluate and correct actual IOP in patients after SMILE.
2.Factors influencing intraocular pressure after femtosecond laser surgery and verification of intraocular pressure correction formulas
Chuanhai ZHOU ; Lijun WANG ; Long WEN ; Haobo FAN ; Zexin YE
International Eye Science 2025;25(3):506-510
AIM: To analyze the factors affecting non-contact intraocular pressure(IOPNCT)measurements after femtosecond laser-assisted small incision lenticule extraction(SMILE), explore the correlation of IOPNCT with central corneal thickness(CCT)and corneal curvature after SMILE, and construct the corresponding regression model which will provide scientific basis for clinical evaluation of the true IOP of patients after SMILE.METHODS: Data from a retrospective analysis of 107 myopic patients(206 eyes)who underwent SMILE and 107 myopic patients(201 eyes)received femtosecond laser-assisted in situ keratomileusis(FS-LASIK)surgery from June 2023 to May 2024 were examined. IOPNCT, CCT, and corneal curvature before surgery and at 1 and 3 mo were collected. The preoperative and postoperative IOPNCT, CCT and corneal curvature were analyzed by ANOVA and Pearson correlation analysis, and multiple linear regression models were constructed to evaluate the association of postoperative changes of IOPNCT, CCT and corneal curvature.RESULTS: There were significant differences in IOPNCT, CCT, and corneal curvature of both SMILE and FS-LASIK patients(all P<0.001), there was no significant difference between two groups and interaction effects(all P>0.05), and the IOPNCT, CCT and corneal curvature at 1 and 3 mo post-surgery were significantly lower than preoperative(all P<0.05). Pearson correlation analysis showed a positive correlation between IOPNCT and CCT at 1 and 3 mo after SMILE(r=0.261, 0.267, all P<0.001), but no significant correlation with corneal curvature(all P>0.05). Multiple linear regression analysis of IOPNCT with CCT and corneal curvature at 1 mo after SMILE indicated that the regression equation was: Y=3.426+0.019X1-0.058X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistical significant difference in the equation(F=7.654, P=0.001); the regression equation for 3 mo after surgery was: Y=2.056+0.020X1-0.038 X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistically significance in the equation(F=7.903, P<0.001). The regression equation of postoperative IOPNCT change(△IOPNCT)and intraoperative cutting corneal thickness(△CCT)and corneal curvature at 1 mo was Y=-2.252+0.008X1+0.587X2(Y represents △IOPNCT, X1 stands for the △CCT, X2 represents the corneal curvature change value), with statistical significant difference in the equation(F=17.550, P<0.001); the regression equation for 3 mo after surgery was: Y=-2.168+0.024X1+0.281X2(Y represents △IOPNCT, X1 represents △CCT, X2 indicates the corneal curvature change values), with statistical significant difference in the equation(F=16.030, P<0.001).CONCLUSION: After SMILE and FS-LASIK surgery, the IOPNCT value of patients was mainly affected by CCT compared with preoperative surgery, and the short-term use of hormone eye drops, fluorometholone, did not cause a significant increase in IOP; both the IOP correction formula at 1 and 3 mo postoperatively can be used clinically to evaluate and correct actual IOP in patients after SMILE.
3.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
4.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
5.Status of Clinical Practice Guideline Information Platforms
Xueqin ZHANG ; Yun ZHAO ; Jie LIU ; Long GE ; Ying XING ; Simeng REN ; Yifei WANG ; Wenzheng ZHANG ; Di ZHANG ; Shihua WANG ; Yao SUN ; Min WU ; Lin FENG ; Tiancai WEN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):462-471
Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.
6.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
7.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
8.Oxocrebanine inhibits proliferation of hepatoma HepG2 cells by inducing apoptosis and autophagy.
Zheng-Wen WANG ; Cai-Yan PAN ; Chang-Long WEI ; Hui LIAO ; Xiao-Po ZHANG ; Cai-Yun ZHANG ; Lei YU
China Journal of Chinese Materia Medica 2025;50(6):1618-1625
The study investigated the specific mechanism by which oxocrebanine, the anti-hepatic cancer active ingredient in Stephania hainanensis, inhibits the proliferation of hepatic cancer cells. Firstly, methyl thiazolyl tetrazolium(MTT) assay, 5-bromodeoxyuridine(BrdU) labeling, and colony formation assay were employed to investigate whether oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells. Propidium iodide(PI) staining was used to observe the oxocrebanine-induced apoptosis of HepG2 and Hep3B2.1-7 cells. Western blot was employed to verify whether apoptotic effector proteins, such as cleaved cysteinyl aspartate-specific protease 3(c-caspase-3), poly(ADP-ribose) polymerase 1(PARP1), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), Bcl-2 homologous killer(Bak), and myeloid cell leukemia-1(Mcl-1) were involved in apoptosis. Secondly, HepG2 cells were simultaneously treated with oxocrebanine and the autophagy inhibitor 3-methyladenine(3-MA), and the changes in the autophagy marker LC3 and autophagy-related proteins [eukaryotic translation initiation factor 4E-binding protein 1(4EBP1), phosphorylated 4EBP1(p-4EBP1), 70-kDa ribosomal protein S6 kinase(P70S6K), and phosphorylated P70S6K(p-P70S6K)] were determined. The results of MTT assay, BrdU labeling, and colony formation assay showed that oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells in a dose-dependent manner. The results of flow cytometry suggested that the apoptosis rate of HepG2 and Hep3B2.1-7 cells increased after treatment with oxocrebanine. Western blot results showed that the protein levels of c-caspase-3, Bax, and Bak were up-regulated and those of PARP1, Bcl-2, and Mcl-1 were down-regulated in the HepG2 cells treated with oxocrebanine. The results indicated that oxocrebanine induced apoptosis, thereby inhibiting the proliferation of hepatic cancer cells. The inhibition of HepG2 cell proliferation by oxocrebanine may be related to the induction of protective autophagy in hepatocellular carcinoma cells. Oxocrebanine still promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, reduced the phosphorylation levels of 4EBP1 and P70S6K, which can be reversed by the autophagy inhibitor 3-MA. It is prompted that oxocrebanine can inhibit the proliferation of hepatic cancer cells by inducing autophagy. In conclusion, oxocrebanine inhibits the proliferation of hepatic cancer cells by inducing apoptosis and autophagy.
Humans
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Caspase 3/genetics*
9.Professor YANG Zhong-qi's prescription patterns for hypertension based on latent structure model and association rule analysis.
Hui-Lin LIU ; Shi-Hao NI ; Xiao-Jiao ZHANG ; Wen-Jie LONG ; Xiao-Ming DONG ; Zhi-Ying LIU ; Hui-Li LIAO ; Zhong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(10):2865-2874
Based on latent structure model and association rule analysis, this study investigates the prescription patterns used by professor YANG Zhong-qi in treating hypertension with traditional Chinese medicine(TCM) and infers the associated TCM syndromes, providing a reference for clinical syndrome differentiation and treatment. The observation window spanned from January 8, 2013, to June 26, 2024, during which qualified herbal decoction prescriptions meeting efficacy criteria were extracted from the outpatient medical record system of the First Affiliated Hospital of Guangzhou University of Chinese Medicine and compiled into a standardized database. Statistical analysis of high-frequency herbs included frequency counts and herbal property-channel tropism analysis. Latent structure modeling and association rule analysis were performed using R 4.3.2 and Lantern 5.0 software to identify core herbal combinations and infer TCM syndrome patterns. A total of 2 436 TCM prescriptions were included in the study, involving 263 drugs with a cumulative frequency of 29 783. High-frequency herbs comprised Uncariae Ramulus cum Uncis, Poria, Glycyrrhizae Radix et Rhizoma, Puerariae Lobatae Radix, and Alismatis Rhizoma, predominantly categorized as deficiency-tonifying, heat-clearing, and blood-activating and stasis-resolving herbs. Latent structure analysis identified 18 latent variables, 74 latent classes, 5 comprehensive clustering models, and 15 core herbal combinations, suggesting that the core syndrome clusters include liver Yang hyperactivity pattern, Yin deficiency with Yang hyperactivity pattern, phlegm-stasis intermingling pattern, and liver-kidney insufficiency pattern. Association rule analysis revealed 22 robust association rules. RESULTS:: indicate that hypertension manifests as a deficiency-rooted excess manifestation, significantly associated with functional dysregulation of the liver, lung, spleen-stomach, heart, and kidney. Key pathogenic mechanisms involve liver Yang hyperactivity, phlegm-stasis interaction, and liver-kidney insufficiency. Therapeutic strategies should prioritize liver-calming, spleen-fortifying, and deficiency-tonifying principles, supplemented by dynamic regulation of Qi-blood and Yin-Yang balance according to syndrome evolution, alongside pathogen-eliminating methods such as phlegm-resolving and stasis-dispelling. Synergistic interventions like mind-tranquilizing therapies should be tailored to individual conditions.
Hypertension/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Medicine, Chinese Traditional
;
Drug Prescriptions
;
Latent Class Analysis
10.A new research direction of traditional Chinese medicine preparations: development and application of improved self-assembled nanoparticles.
China Journal of Chinese Materia Medica 2025;50(13):3569-3573
During the decocting process of traditional Chinese medicine(TCM), molecules spontaneously form self-assembled nanoparticles(SAN) through intermolecular non-covalent interactions. This process effectively addresses the low bioavailability of poorly soluble components, becoming a research hotspot. However, SAN formed in traditional decoctions often exhibit low Zeta potential, poor stability, and easy aggregation, which limit their clinical applications. According to the extensive studies of SAN in TCM decoctions, this paper proposes innovative strategies of utilizing techniques such as micro-precipitation and pH-driven methods to improve SAN. These strategies significantly enhance the uniformity and stability of SAN and effectively increase the transfer rate of poorly soluble components, overcoming the technical bottlenecks of low stability and drug delivery efficiency in TCM decoctions. This article reviews the origins, advantages, and limitations of traditional SAN, discusses the strategies for improving SAN construction and characterization, and delves into the scientific issues that need to be addressed in future research. The aim is to provide new directions for the development of modern TCM preparations.
Nanoparticles/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Medicine, Chinese Traditional
;
Drug Delivery Systems
;
Animals
;
Drug Compounding/methods*

Result Analysis
Print
Save
E-mail