1.Shashen Maidong Tang Enhances Efficacy of Chemotherapy in Mouse Model of Lewis Lung Cancer by Modulating JAK2/STAT3 Signaling Pathway
Lin YU ; Yaoyao WANG ; Limin LIU ; Zuowei HU ; Yanping ZHOU ; Shang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):1-10
ObjectiveTo predict the mechanism through which Shasheng Maidong Tang enhances the efficacy of chemotherapy for lung cancer via network pharmacology and validate the prediction results in animal experiments. MethodsThe potential mechanism through which Shasheng Maidong Tang enhances the efficacy of chemotherapy for lung cancer was predicted by network pharmacology, liquid chromatography-mass spectrometry (LC-MS), and molecular docking methods. C57/BL6 mice were assigned into normal, model, cisplatin, and Shasheng Maidong Tang+cisplatin groups. In addition to the normal group, the remaining groups were injected subcutaneously with 0.2 mL of 1×107 cells·mL-1 Lewis lung cancer cells to establish the Lewis lung cancer model. The daily gavage dose of Shasheng Maidong Tang was 3.58 g·kg-1, and the concentration of cisplatin intraperitoneally injected on every other day was 2 mg·kg-1. Drugs were administered for 14 d. The changes in the tumor volume and the rate of tumor suppression were monitored, and the tumor histopathological changes were observed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay was employed to measure the interleukin (IL)-6 and interferon (IFN)-γ levels in peripheral blood. Real-time PCR was performed to quantify the mRNA levels of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and signal transducer and activator of transcription 3 (STAT3) in the tumor tissue of mice. Western blot was employed to determine the protein levels of JAK2, STAT3, B-cell lymphoma-2 (Bcl-2), cysteinyl aspartate-specific proteinase-3 (Caspase-3), and Pim-1 proto1 (PIM1) in the tumor tissue. Immunohistochemistry was employed to detect the expression of Bcl-2 and PIM1 in the tumor tissue. ResultsNetwork pharmacological predictions indicated that Shasheng Maidong Tang might enhance the efficacy of chemotherapy for lung cancer by regulating nitrogen metabolism, AGE-RAGE signaling pathway, cancer pathway, and JAK/STAT signaling pathway. The experimental results demonstrated that tumor volume in the cisplatin group and Shasheng Maidong Tang+cisplatin group was reduced compared with the model group, with statistically distinct differences observed on days 14, 17, 20 post modeling (P<0.05). Notably, the Shasheng Maidong Tang+cisplatin therapy further decreased tumor volume compared with the cisplatin group, showing marked reductions on days 17 and 20 (P<0.05), consistent with trends visualized in tumor volume comparison charts. The Shasheng Maidong Tang+cisplatin group exhibited higher tumor inhibition rate than the cisplatin group (P<0.05). Histopathological analysis via HE staining revealed that the tumors in the model group displayed frequent nuclear mitosis, densely arranged cells, hyperchromatic nuclei, and no necrosis. Cisplatin treatment induced partial necrosis and vacuolization, while the Shasheng Maidong Tang+cisplatin group exhibited extensive necrotic regions, maximal vacuolization, disarranged tumor cells, and minimal mitotic activity. Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin group showed elevated level of IFN-γ (P<0.01) and declined level of IL-6 (P<0.01) in the peripheral blood. Compared with the cisplatin group, the Shasheng Maidong Tang+cisplatin group presented elevated level of IFN-γ (P<0.01) and lowered level of IL-6 (P<0.01) in the peripheral blood. Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin groups showed down-regulated mRNA levels of JAK2 and STAT3 (P<0.01) and up-regulated mRNA level STAT1 (P<0.01). Compared with the cisplatin group, the Shasheng Maidong Tang+cisplatin group presented down-regulated mRNA levels of JAK2 and STAT3 (P<0.01) and up-regulated mRNA level of STAT1 (P<0.01). Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin group showed down-regulated protein levels of JAK2 (P<0.01), Bcl-2 (P<0.01), PIM1 (P<0.01), and STAT3 (P<0.05), and up-regulated protein level of Caspase-3 (P<0.01). Compared with the cisplatin group, Shasheng Maidong Tang+cisplatin group presented down-regulated protein levels of JAK2 (P<0.01), Bcl-2 (P<0.01), PIM1 (P<0.01), STAT3 (P<0.05), and up-regulated protein level of Caspase-3 (P<0.01). The Bcl-2 and PIM1 expression results obtained by immunohistochemistry were consistent with those of Western blot. ConclusionShasheng Maidong Tang may enhance the efficacy of chemotherapy in the mouse model of Lewis lung cancer by regulating the JAK2/STAT3 signaling pathway.
2.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
3.Construction and Verification of Prediction Model of Qi Deficiency and Blood Stasis Syndrome in Chronic Heart Failure
Tong JIANG ; Xiaodan FAN ; Shijia WANG ; Fengxia LIN ; Zhicong ZENG ; Liangzhen YOU ; Hongcai SHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):154-163
ObjectiveTo construct and validate a clinical prediction model for Qi deficiency and blood stasis syndrome in chronic heart failure (CHF),aiming to assist clinical diagnosis and provide tools and methods for individualized treatment of CHF. MethodsThe clinical data of patients with chronic heart failure treated at Dongzhimen Hospital of Beijing University of Chinese Medicine from January 2022 to January 2024 were retrospectively collected. The patients were randomly divided into a training group and a validation group with a ratio of 7∶3. First, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to preliminarily screen the predictive factors affecting the diagnosis of Qi deficiency and blood stasis syndrome in CHF. Subsequently, the Logistic regression method was applied to conduct a more in-depth and detailed analysis of these factors. Variables with P<0.05 in the results of the multi-factor Logistic regression were carefully selected and included. Based on the regression coefficients obtained from this analysis, a model was constructed, and a nomogram was accurately drawn. Using R software,the receiver operating characteristic (ROC) curve,calibration curve,and decision curve analysis (DCA) were precisely drawn. These analyses were used to comprehensively evaluate the model from three crucial aspects: discrimination,calibration,and clinical applicability. Additionally, the accuracy,specificity,sensitivity,positive predictive value,and negative predictive value of the model were meticulously calculated to conduct a more all-round and comprehensive assessment. ResultsIn total, 168 cases were successfully obtained in the training group, and 71 cases were included in the validation group. After a thorough comparison, it was found that there were no statistically significant differences in the baseline data between the two groups. After being rigorously screened by the LASSO-multivariate logistic regression method, dark red tongue,smoking history,cardiac troponin I,and N-terminal pro-B-type natriuretic peptide (NT-ProBNP) were identified as the influencing factors for diagnosing patients with the Qi deficiency and blood stasis syndrome in CHF. The constructed model demonstrated an area under the curve (AUC) of 0.812 in the training group and 0.719 in the validation group. The calibration curve showed that the predicted curve of the model was close to the actual observed curve. DCA indicated that the model could provide substantial clinical benefits for patients at the decision thresholds ranging from 0.2 to 0.9. ConclusionThe clinical prediction model for Qi deficiency and blood stasis syndrome in chronic heart failure constructed in this study shows good performance. It has certain application value in clinical practice, which may contribute to the improvement of the diagnosis and treatment of CHF patients with this syndrome.
4.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
5.Mechanism of Ethoxysanguinarine in Regulating IRE1/RIDD Signaling Pathway to Inhibit Endoplasmic Reticulum Stress and Alleviate Cardiomyocyte Apoptosis
Zucheng SHANG ; Hongzheng LI ; Mengfan LI ; Wen SUN ; Guosheng LIN ; Aling SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):141-148
ObjectiveTo investigate the effects of ethoxysanguinarine (ETH) on angiotensin Ⅱ (Ang Ⅱ)-mediated cardiomyocyte apoptosis and its regulatory effects of inositol-requiring enzyme 1 (IRE1)/regulated IRE1-dependent decay (RIDD) signaling pathway and endoplasmic reticulum stress. MethodsWestern blot was used to detect the establishment of the H9c2 model via Ang Ⅱ stimulation, which was identified as a cardiomyocyte apoptosis model. Subsequently, the inhibitory effect of ETH on cell proliferation was assessed using the cell counting Kit-8 (CCK-8) to determine the optimal effective dose of ETH. H9c2 cardiomyocytes were divided into a blank group, a model group (Ang Ⅱ, 1 mmol·L-1), and low-, medium-, and high-dose ETH groups (1.25, 2.5, and 5 mmol·L-1). Morphological changes in cardiomyocytes induced by Ang Ⅱ were detected using phalloidin staining. Cardiomyocyte apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL) staining. The apoptosis cycle was detected by Annexin V/PI flow cytometry. Western blot was used to detect the expression levels of apoptosis-related proteins, endoplasmic reticulum stress, and IRE1/RIDD pathway-related proteins. ResultsWestern blot results showed that 1 mmol/mL Ang Ⅱ stimulation significantly increased the protein expression levels of Bip, p-IRE1, and Bid in H9c2 cells (P<0.05, P<0.01), indicating the induction of endoplasmic reticulum stress, activation of the IRE1/RIDD signaling pathway, and initiation of the apoptosis process. Compared with the blank group, the model group showed a significant increase in the surface area of H9c2 cells and the apoptosis rate of cardiomyocytes, as well as in both early and late apoptosis rates (P<0.01). The expression levels of Bid, Bax, cleaved-Caspase-3, and cleaved-Caspase-8 proteins were significantly increased, while the expression level of Bcl-2 protein was significantly decreased (P<0.01). The expression levels of Bip, p-IRE1, and p-RIDD proteins were significantly increased (P<0.05, P<0.01). Compared with those in the model group, the surface area of cardiomyocytes and the apoptosis rate of cardiomyocytes in all ETH groups were significantly decreased after drug intervention. Both early and late apoptosis rates were significantly decreased. The expression level of cleaved-Caspase-8 was significantly decreased in the low-dose ETH group (P<0.05). The expression levels of Bid, Bax, and cleaved-Caspase-8 were significantly decreased in the medium-dose ETH group (P<0.05, P<0.01). The high-dose ETH group significantly reduced the expression levels of Bid, Bax, cleaved-Caspase-3, and cleaved-Caspase-8 (P<0.05, P<0.01) and significantly increased the expression level of Bcl-2 (P<0.05). The level of p-IRE1 protein in the medium-dose ETH group was significantly decreased (P<0.01). The expression levels of Bip, p-IRE1, and p-RIDD proteins in the high-dose ETH group were significantly decreased (P<0.05, P<0.01). ConclusionETH can alleviate Ang Ⅱ-mediated cardiomyocyte apoptosis by inhibiting the IRE1/RIDD signaling pathway and further alleviate the cardiac injury caused by hypertension.
6.Mechanism of Ethoxysanguinarine in Regulating IRE1/RIDD Signaling Pathway to Inhibit Endoplasmic Reticulum Stress and Alleviate Cardiomyocyte Apoptosis
Zucheng SHANG ; Hongzheng LI ; Mengfan LI ; Wen SUN ; Guosheng LIN ; Aling SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):141-148
ObjectiveTo investigate the effects of ethoxysanguinarine (ETH) on angiotensin Ⅱ (Ang Ⅱ)-mediated cardiomyocyte apoptosis and its regulatory effects of inositol-requiring enzyme 1 (IRE1)/regulated IRE1-dependent decay (RIDD) signaling pathway and endoplasmic reticulum stress. MethodsWestern blot was used to detect the establishment of the H9c2 model via Ang Ⅱ stimulation, which was identified as a cardiomyocyte apoptosis model. Subsequently, the inhibitory effect of ETH on cell proliferation was assessed using the cell counting Kit-8 (CCK-8) to determine the optimal effective dose of ETH. H9c2 cardiomyocytes were divided into a blank group, a model group (Ang Ⅱ, 1 mmol·L-1), and low-, medium-, and high-dose ETH groups (1.25, 2.5, and 5 mmol·L-1). Morphological changes in cardiomyocytes induced by Ang Ⅱ were detected using phalloidin staining. Cardiomyocyte apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL) staining. The apoptosis cycle was detected by Annexin V/PI flow cytometry. Western blot was used to detect the expression levels of apoptosis-related proteins, endoplasmic reticulum stress, and IRE1/RIDD pathway-related proteins. ResultsWestern blot results showed that 1 mmol/mL Ang Ⅱ stimulation significantly increased the protein expression levels of Bip, p-IRE1, and Bid in H9c2 cells (P<0.05, P<0.01), indicating the induction of endoplasmic reticulum stress, activation of the IRE1/RIDD signaling pathway, and initiation of the apoptosis process. Compared with the blank group, the model group showed a significant increase in the surface area of H9c2 cells and the apoptosis rate of cardiomyocytes, as well as in both early and late apoptosis rates (P<0.01). The expression levels of Bid, Bax, cleaved-Caspase-3, and cleaved-Caspase-8 proteins were significantly increased, while the expression level of Bcl-2 protein was significantly decreased (P<0.01). The expression levels of Bip, p-IRE1, and p-RIDD proteins were significantly increased (P<0.05, P<0.01). Compared with those in the model group, the surface area of cardiomyocytes and the apoptosis rate of cardiomyocytes in all ETH groups were significantly decreased after drug intervention. Both early and late apoptosis rates were significantly decreased. The expression level of cleaved-Caspase-8 was significantly decreased in the low-dose ETH group (P<0.05). The expression levels of Bid, Bax, and cleaved-Caspase-8 were significantly decreased in the medium-dose ETH group (P<0.05, P<0.01). The high-dose ETH group significantly reduced the expression levels of Bid, Bax, cleaved-Caspase-3, and cleaved-Caspase-8 (P<0.05, P<0.01) and significantly increased the expression level of Bcl-2 (P<0.05). The level of p-IRE1 protein in the medium-dose ETH group was significantly decreased (P<0.01). The expression levels of Bip, p-IRE1, and p-RIDD proteins in the high-dose ETH group were significantly decreased (P<0.05, P<0.01). ConclusionETH can alleviate Ang Ⅱ-mediated cardiomyocyte apoptosis by inhibiting the IRE1/RIDD signaling pathway and further alleviate the cardiac injury caused by hypertension.
7.Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury
Hongcheng PENG ; Guoxuan PENG ; Anyi LEI ; Yuan LIN ; Hong SUN ; Xu NING ; Xianwen SHANG ; Jin DENG ; Mingzhi HUANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1497-1503
BACKGROUND:In the initial stage of growth plate injury inflammation,platelet-derived growth factor BB promotes the repair of growth plate injury by promoting mesenchymal progenitor cell infiltration,chondrogenesis,osteogenic response,and regulating bone remodeling. OBJECTIVE:To elucidate the action mechanism of platelet-derived growth factor BB after growth plate injury. METHODS:PubMed,VIP,WanFang,and CNKI databases were used as the literature sources.The search terms were"growth plate injury,bone bridge,platelet-derived growth factor BB,repair"in English and Chinese.Finally,66 articles were screened for this review. RESULTS AND CONCLUSION:Growth plate injury experienced early inflammation,vascular reconstruction,fibroossification,structural remodeling and other pathological processes,accompanied by the crosstalk of chondrocytes,vascular endothelial cells,stem cells,osteoblasts,osteoclasts and other cells.Platelet-derived growth factor BB,as an important factor in the early inflammatory response of injury,regulates the injury repair process by mediating a variety of cellular inflammatory responses.Targeting the inflammatory stimulation mediated by platelet-derived growth factor BB may delay the bone bridge formation process by improving the functional activities of osteoclasts,osteoblasts,and chondrocytes,so as to achieve the injury repair of growth plate.Platelet-derived growth factor BB plays an important role in angiogenesis and bone repair tissue formation at the injured site of growth plate and intrachondral bone lengthening function of uninjured growth plate.Inhibition of the coupling effect between angiogenesis initiated by platelet-derived growth factor BB and intrachondral bone formation may achieve the repair of growth plate injury.
8.Intervention mechanism of Yiqi Fumai Formula in mice with experimental heart failure based on "heart-gut axis".
Zi-Xuan ZHANG ; Yu-Zhuo WU ; Ke-Dian CHEN ; Jian-Qin WANG ; Yang SUN ; Yin JIANG ; Yi-Xuan LIN ; He-Rong CUI ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(12):3399-3412
This paper aimed to investigate the therapeutic effect and mechanism of action of the Yiqi Fumai Formula(YQFM), a kind of traditional Chinese medicine(TCM), on mice with experimental heart failure based on the "heart-gut axis" theory. Based on the network pharmacology integrated with the group collaboration algorithm, the active ingredients were screened, a "component-target-disease" network was constructed, and the potential pathways regulated by the formula were predicted and analyzed. Next, the model of experimental heart failure was established by intraperitoneal injection of adriamycin at a single high dose(15 mg·kg~(-1)) in BALB/c mice. After intraperitoneal injection of YQFM(lyophilized) at 7.90, 15.80, and 31.55 mg·d~(-1) for 7 d, the protective effects of the formula on cardiac function were evaluated using indicators such as ultrasonic electrocardiography and myocardial injury markers. Combined with inflammatory factors in the cardiac and colorectal tissue, as well as targeted assays, the relevant indicators of potential pathways were verified. Meanwhile, 16S rDNA sequencing was performed on mouse fecal samples using the Illumina platform to detect changes in gut flora and analyze differential metabolic pathways. The results show that the administration of injectable YQFM(lyophilized) for 7 d significantly increased the left ventricular end-systolic internal diameter, fractional shortening, and ejection fraction of cardiac tissue of mice with experimental heart failure(P<0.05). Moreover, markers of myocardial injury were significantly decreased(P<0.05), indicating improved cardiac function, along with significantly suppressed inflammatory responses in cardiac and intestinal tissue(P<0.05). Additionally, the species of causative organisms was decreased, and the homeostasis of gut flora was improved, involving a modulatory effect on PI3K-Akt signaling pathway-related inflammation in cardiac and colorectal tissue. In conclusion, YQFM can affect the "heart-gut axis" immunity through the homeostasis of the gut flora, thereby exerting a therapeutic effect on heart failure. This finding provides a reference for the combination of TCM and western medicine to prevent and treat heart failure based on the "heart-gut axis" theory.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Heart Failure/microbiology*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Disease Models, Animal
;
Gastrointestinal Microbiome/drug effects*
;
Heart/physiopathology*
;
Humans
;
Signal Transduction/drug effects*
9.Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
Ying-Ying CHEN ; Shang-Lin JIANG ; Liang-Hui HUANG ; Ya-Guang ZENG ; Xue-Hua WANG ; Wei ZHENG
Progress in Biochemistry and Biophysics 2025;52(8):2163-2172
ObjectivePrimary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue, ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound (CEUS), face limitations in applicability and objectivity. The primary objective of this study was to develop an advanced, light-weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. MethodsThis retrospective study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN), and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics: area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity (SE), and specificity (SP). ResultsThe evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84. Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification. ConclusionThe 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’ diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.
10.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.


Result Analysis
Print
Save
E-mail