1.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes.
2.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
Objective:
Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF.
Methods:
A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented.
Results:
Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates.
Conclusion
The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures.
3.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes.
4.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
Objective:
Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF.
Methods:
A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented.
Results:
Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates.
Conclusion
The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures.
5.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes.
6.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
Objective:
Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF.
Methods:
A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented.
Results:
Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates.
Conclusion
The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures.
7.Syncope in Migraine: A Genome-Wide Association Study Revealing Distinct Genetic Susceptibility Variants Across Subtypes
Wei LIN ; Yi LIU ; Chih-Sung LIANG ; Po-Kuan YEH ; Chia-Kuang TSAI ; Kuo-Sheng HUNG ; Yu-Chin AN ; Fu-Chi YANG
Journal of Clinical Neurology 2024;20(6):599-609
Background:
and Purpose Syncope is characterized by the temporary loss of consciousness and is commonly associated with migraine. However, the genetic factors that contribute to this association are not well understood. This study investigated the specific genetic loci that make patients with migraine more susceptible to syncope as well as the genetic factors contributing to syncope and migraine comorbidity in a Han Chinese population in Taiwan.
Methods:
A genome-wide association study was applied to 1,724 patients with migraine who visited a tertiary hospital in Taiwan. The patients were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0 array and categorized into the following subgroups based on migraine type: episodic migraine, chronic migraine, migraine with aura, and migraine without aura. Multivariate regression analyses were used to assess the relationships between specific single-nucleotide polymorphisms (SNPs) and the clinical characteristics in patients with syncope and migraine comorbidity.
Results:
In patients with migraine, SNPs were observed to be associated with syncope. In particular, the rs797384 SNP located in the intron region of LOC102724945 was associated with syncope in all patients with migraine. Additionally, four SNPs associated with syncope susceptibility were detected in the nonmigraine control group, and these SNPs differed from those in the migraine group, suggesting distinct underlying mechanisms. Furthermore, the rs797384 variant in the intron region of LOC102724945 was associated with the score on the Beck Depression Inventory.
Conclusions
The novel genetic loci identified in this study will improve our understanding of the genetic basis of syncope and migraine comorbidity.
8.Syncope in Migraine: A Genome-Wide Association Study Revealing Distinct Genetic Susceptibility Variants Across Subtypes
Wei LIN ; Yi LIU ; Chih-Sung LIANG ; Po-Kuan YEH ; Chia-Kuang TSAI ; Kuo-Sheng HUNG ; Yu-Chin AN ; Fu-Chi YANG
Journal of Clinical Neurology 2024;20(6):599-609
Background:
and Purpose Syncope is characterized by the temporary loss of consciousness and is commonly associated with migraine. However, the genetic factors that contribute to this association are not well understood. This study investigated the specific genetic loci that make patients with migraine more susceptible to syncope as well as the genetic factors contributing to syncope and migraine comorbidity in a Han Chinese population in Taiwan.
Methods:
A genome-wide association study was applied to 1,724 patients with migraine who visited a tertiary hospital in Taiwan. The patients were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0 array and categorized into the following subgroups based on migraine type: episodic migraine, chronic migraine, migraine with aura, and migraine without aura. Multivariate regression analyses were used to assess the relationships between specific single-nucleotide polymorphisms (SNPs) and the clinical characteristics in patients with syncope and migraine comorbidity.
Results:
In patients with migraine, SNPs were observed to be associated with syncope. In particular, the rs797384 SNP located in the intron region of LOC102724945 was associated with syncope in all patients with migraine. Additionally, four SNPs associated with syncope susceptibility were detected in the nonmigraine control group, and these SNPs differed from those in the migraine group, suggesting distinct underlying mechanisms. Furthermore, the rs797384 variant in the intron region of LOC102724945 was associated with the score on the Beck Depression Inventory.
Conclusions
The novel genetic loci identified in this study will improve our understanding of the genetic basis of syncope and migraine comorbidity.
9.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes.
10.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
Objective:
Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF.
Methods:
A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented.
Results:
Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates.
Conclusion
The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures.

Result Analysis
Print
Save
E-mail