1.Synergistic Effect and Mechanism of FUT8 Inhibitor 2FF With DOX for Cancer Treatment
Zhi-Dong XIE ; Xiao-Lian ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):478-486
ObjectiveChemotherapy is one of the important therapeutic approaches for cancer treatment. However, the emergence of multidrug resistance and side effects significantly limit its application. To address these challenges, chemotherapy is often combined with other drugs or therapies. Among the 13 human fucosyltransferases (FUTs) identified, FUT8 (alpha-(1,6)-fucosyltransferase) is the only enzyme responsible for core fucosylation. Core fucosylation plays an important role in cancer occurrence, metastasis and chemotherapy resistance, making the suppression of FUT8 a potential strategy for reversing multidrug resistance. This study aims to evaluate the feasibility of combining the small molecule FUT8 inhibitor 2FF (2-deoxy-2-fluoro-L-fucose) with the clinical chemotherapeutic drug doxorubicin (DOX) for treating malignant tumors. MethodsThe human hepatocellular carcinoma cell line HepG2 and mouse colon cancer cell line CT26 cells were treated with 2FF, DOX or their combination and core fucosylation levels were assessed using Lectin blot. HepG2 and CT26 cells were exposed to 50 μmol/L 2FF for 72 h, followed by treatment with a gradient concentration of DOX for 24 h. Cell viability and IC50 values were determined via the CCK-8 assay. Transwell invasion assays were conducted to evaluate the combined effect of 2FF and DOX on the invasion ability of HepG2 cells. Flow cytometry was performed to analyze the impact of 2FF, DOX and their combination on membrane PD-L1 expression of HepG2 cells. To assess the in vivo effect, 6- to 8-week-old female BALB/c mice (20-25 g), were subcutaneously injected with 1×106 CT26 cells into the right axilla (four groups, six mice in each group). After the average tumor volume reached 100 mm3, mice were treated with DOX, 2FF, their combination, or saline (mock group) every other day. DOX was administrated intraperitoneally (2 mg/kg), 2FF intravenously (5 mg/kg), and the combination group, received the both treatment. Tumor size was measured every other day using a vernier caliper. ResultsThis study demonstrated that DOX upregulates the core fucosylation levels in HepG2 and CT26 cells,while 2FF effectively inhibits this DOX-induced effect. Furthermone, 2FF enhanced the sensitivity of HepG2 and CT26 cells to DOX. The combination of 2FF and DOX synergistically inhibited the invasion ability of HepG2 cells, and enhanced the anti-tumor efficacy of CT26 subcutaneous tumor model in BALB/c mice. However the combination treatment led to weight loss in mice. In addition, DOX increased the cell surface PD-L1 expression in HepG2 cells, which was effectively suppressed by 2FF. ConclusionThe FUT8 inhibitor 2FF effectively suppresses DOX-induced upregulation of core fucosylation and PD-L1 levels in tumor cells, and 2FF synergistically enhances the anticancer efficacy of DOX.
2.Screening of Anti-Tumor Drugs that Enhance Antigen Presentation of AML Cells with TCR-Like Antibody.
Xiao-Ying YANG ; Bo TANG ; Hui-Hui LIU ; Wei-Wei XIE ; Shuang-Lian XIE ; Wen-Qiong WANG ; Jin WANG ; Shan ZHAO ; Yu-Jun DONG
Journal of Experimental Hematology 2025;33(5):1305-1311
OBJECTIVE:
To screen anti-tumor drugs that improve antigen processing and presentation in acute myeloid leukemia (AML) cells.
METHODS:
A TCR-like or TCR mimic antibody that can specifically recognize HLA-A*0201:WT1126-134 ( RMFPNAPYL) complex (hereafter referred to as HLA-A2:WT1) was synthesized to evaluate the function of antigen processing and presentation machinery (APM) in AML cells. AML cell line THP1 was incubated with increasing concentrations of IFN-γ, hypomethylating agents (HMA), immunomodulatory drugs (IMiD), proteasome inhibitors (PI) and γ-secretase inhibitors (GSI), followed by measuring of HLA-ABC, HLA-A2 and HLA-A2:WT1 levels by flow cytometry at consecutive time points.
RESULTS:
The TCR-like antibody we generated only binds to HLA-A*0201+WT1+ cells, indicating the specificity of the antibody. HLA-A2:WT1 level of THP-1 cells detected with the TCR-like antibody was increased significantly after co-incubation with IFN-γ, showing that the HLA-A2:WT1 TCR like antibody could evaluate the function of APM. Among the anti-tumor agents screened in this study, GSI (LY-411575) and HMA (decitabine and azacitidine) could significantly increase the HLA-A2:WT1 level. The IMiD lenalidomide and pomalidomide could aslo upregulate the expression of HLA-A2:WT1 complex under certain concentrations of the drugs and incubation time. As proteasome inhibitors, carfilzomib could significantly decreased the expression of HLA-A2:WT1, while bortezomib had no significant effect on HLA-A2:WT1 expression.
CONCLUSION
HLA-A2:WT1 TCR-like antibody can effectively reflect the APM function. Some of the anti-tumor drugs can affect the APM function and immunogenicity of tumor cells.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Antineoplastic Agents/pharmacology*
;
Antigen Presentation/drug effects*
;
HLA-A2 Antigen/immunology*
;
Receptors, Antigen, T-Cell/immunology*
;
Cell Line, Tumor
;
Interferon-gamma
3.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
4.RXRα modulates hepatic stellate cell activation and liver fibrosis by targeting CaMKKβ-AMPKα axis.
Lijun CAI ; Meimei YIN ; Shuangzhou PENG ; Fen LIN ; Liangliang LAI ; Xindao ZHANG ; Lei XIE ; Chuanying WANG ; Huiying ZHOU ; Yunfeng ZHAN ; Gulimiran ALITONGBIEKE ; Baohuan LIAN ; Zhibin SU ; Tenghui LIU ; Yuqi ZHOU ; Zongxi LI ; Xiaohui CHEN ; Qi ZHAO ; Ting DENG ; Lulu CHEN ; Jingwei SU ; Luoyan SHENG ; Ying SU ; Ling-Juan ZHANG ; Fu-Quan JIANG ; Xiao-Kun ZHANG
Acta Pharmaceutica Sinica B 2025;15(7):3611-3631
Hepatic stellate cells (HSCs) are the primary fibrogenic cells in the liver, and their activation plays a crucial role in the development and progression of hepatic fibrosis. Here, we report that retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a key modulator of HSC activation and liver fibrosis. RXRα exerts its effects by modulating calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-mediated activation of AMP-activated protein kinase-alpha (AMPKα). In addition, we demonstrate that K-80003, which binds RXRα by a unique mechanism, effectively suppresses HSC activation, proliferation, and migration, thereby inhibiting liver fibrosis in the CCl4 and amylin liver NASH (AMLN) diet animal models. The effect is mediated by AMPKα activation, promoting mitophagy in HSCs. Mechanistically, K-80003 activates AMPKα by inducing RXRα to form condensates with CaMKKβ and AMPKα via a two-phase process. The formation of RXRα condensates is driven by its N-terminal intrinsic disorder region and requires phosphorylation by CaMKKβ. Our results reveal a crucial role of RXRα in liver fibrosis regulation through modulating mitochondrial activities in HSCs. Furthermore, they suggest that K-80003 and related RXRα modulators hold promise as therapeutic agents for fibrosis-related diseases.
5.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
6.Natural products for the treatment of age-related macular degeneration: New insights focusing on mitochondrial quality control and cGAS/STING pathway.
Xuelu XIE ; Shan LIAN ; Wenyong YANG ; Sheng HE ; Jingqiu HE ; Yuke WANG ; Yan ZENG ; Fang LU ; Jingwen JIANG
Journal of Pharmaceutical Analysis 2025;15(5):101145-101145
Age-related macular degeneration (AMD) is a disease that affects the vision of elderly individuals worldwide. Although current therapeutics have shown effectiveness against AMD, some patients may remain unresponsive and continue to experience disease progression. Therefore, in-depth knowledge of the mechanism underlying AMD pathogenesis is urgently required to identify potential drug targets for AMD treatment. Recently, studies have suggested that dysfunction of mitochondria can lead to the aggregation of reactive oxygen species (ROS) and activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) innate immunity pathways, ultimately resulting in sterile inflammation and cell death in various cells, such as cardiomyocytes and macrophages. Therefore, combining strategies targeting mitochondrial dysfunction and inflammatory mediators may hold great potential in facilitating AMD management. Notably, emerging evidence indicates that natural products targeting mitochondrial quality control (MQC) and the cGAS/STING innate immunity pathways exhibit promise in treating AMD. Here, we summarize phytochemicals that could directly or indirectly influence the MQC and the cGAS/STING innate immunity pathways, as well as their interconnected mediators, which have the potential to mitigate oxidative stress and suppress excessive inflammatory responses, thereby hoping to offer new insights into therapeutic interventions for AMD treatment.
7.Liquiritin improves macrophage degradation of engulfed tumour cells by promoting the formation of phagolysosomes via NOX2/gp91phox.
Caiyi YANG ; Kehan CHEN ; Yunliang CHEN ; Xuting XIE ; Pengcheng LI ; Meng ZHAO ; Junjie LIANG ; Xueqian XIE ; Xiaoyun CHEN ; Yanping CAI ; Bo XU ; Qing WANG ; Lian ZHOU ; Xia LUO
Journal of Pharmaceutical Analysis 2025;15(5):101093-101093
The incomplete degradation of tumour cells by macrophages (Mϕ) is a contributing factor to tumour progression and metastasis, and the degradation function of Mϕ is mediated through phagosomes and lysosomes. In our preliminary experiments, we found that overactivation of NADPH oxidase 2 (NOX2) reduced the ability of Mϕ to degrade engulfed tumour cells. Above this, we screened out liquiritin from Glycyrrhiza uralensis Fisch, which can significantly inhibit NOX2 activity and inhibit tumours, to elucidate that suppressing NOX2 can enhance the ability of Mϕ to degrade tumour cells. We found that the tumour environment could activate the NOX2 activity in Mϕ phagosomes, causing Mϕ to produce excessive reactive oxygen species (ROS), thus prohibiting the formation of phagolysosomes before degradation. Conversely, inhibiting NOX2 in Mϕ by liquiritin can reduce ROS and promote phagosome-lysosome fusion, therefore improving the enzymatic degradation of tumour cells after phagocytosis, and subsequently promote T cell activity by presenting antigens. We further confirmed that liquiritin down-regulated the expression of the NOX2 specific membrane component protein gp91 phox, blocking its binding to the NOX2 cytoplasmic component proteins p67 phox and p47 phox, thereby inhibiting the activity of NOX2. This study elucidates the specific mechanism by which Mϕ cannot degrade tumour cells after phagocytosis, and indicates that liquiritin can promote the ability of Mϕ to degrade tumour cells by suppressing NOX2.
8.Vulnerability of medicinal plant Lamiophlomis rotata under future climate changes
Hong-chao WANG ; Zheng-wei XIE ; Qi-ao MA ; Tie-lin WANG ; Guang YANG ; Xiao-ting XU ; Kai SUN ; Xiu-lian CHI
Acta Pharmaceutica Sinica 2024;59(10):2871-2879
italic>Lamiophlomis rotata is an important medicinal plant species endemic to the Tibetan Plateau, which is prone to strong climate change impacts on its habitable range due to the high sensitivity of the Tibetan Plateau to climate change. Accurate quantification of species vulnerability to climate change is essential for assessing species extinction risk and developing effective conservation strategies. Therefore, we carried out the
9.Study on the Molecular Mechanism of Shema Zhichuan Liquid in the Treatment of Neutrophilic Asthma Based on Network Pharmacology and In Vivo Experiment
Leshen LIAN ; Xingru MENG ; Xiufang HUANG ; Jinxi ZHOU ; Yanxiao XIE ; Hailan TAO ; Ziyun JIANG ; Xiaohong LIU
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(2):247-256
Objective To investigate the molecular mechanism of Shema Zhichuan Liquid in the treatment of neutrophilic asthma(NA)based on network pharmacology and in vivo experiments.Methods(1)The TCMSP,literature search and Swiss ADME and Swiss Target Prediction databases were used to search and screen the active components and their targets of Shema Zhichuan Liquid.OMIM,GeneCards,DisGeNET and DrugBank databases were used to search and screen NA disease-related targets.The intersection of the active components and NA disease-related targets of Shema Zhichuan Liquid was obtained through the microbiology platform to obtain the potential targets of Shema Zhichuan Liquid for the treatment of NA(common targets).Cytoscape 3.8 software was used to construct the network of"Chinese medicinals-active components-potential targets".The PPI network of potential targets was established by STRING database,and the core targets were obtained by analysing the built-in Mcode plug-in.The Metascape platform was used to enrich the gene ontology(GO),Kyoto Encyclopaedia of Genes and Genomes(KEGG)pathways for the potential targets.(2)BALB/C mice were acclimatised and fed for 1 week and randomly divided into a blank group,NA model group,low-dose group(2.5 g·kg-1)and high-dose group of Shema Zhichuan Liquid(10 g·kg-1),and control group of Dexamethasone(1 mg·kg-1);the NA mouse model was replicated by intraperitoneal injection of sensitizer(OVA+CFA)and nebulized inhalation excitation.OVA/CFA(20 μg OVA+75 μg CFA,0.3 mL)was injected intraperitoneally to sensitize on days 0,7 and 14 respectively,and 5%OVA suspension was nebulized on days 21-30(8 mL each time,40 minutes each time,once a day);1 hour before nebulisation,each group was administered by gastric gavage,and the Dexamethasone control group was administered by intraperitoneal injection once a day.The pathological changes of mouse lung tissue were observed by HE staining;IL-8 content in alveolar lavage fluid was detected by ELISA;mRNA expression levels of NLRP3 and CXCR2 were detected by RT-qPCR;and p-mTOR protein expression levels was detected by immunohistochemistry.Results(1)A total of 826 active component targets and 154 NA disease-related targets were obtained,and 51 potential targets(common targets)for the treatment of NA were obtained from the intersection of the active component and the NA disease-related targets of Shema Zhichuan Liquid.Through the network analysis of"Chinese medicinals-active components-potential targets",quercetin,lignocerotoxin,kaempferol,stigmasterol,naringenin and other key active components were obtained.The PPI network analysis of potential targets yielded 29 core targets,including AKT1,IL6,TNF,EGFR,NLRP3,RELA,MIF,CXCR2,VEGFA,etc..The GO functional enrichment analysis yielded 882 biological process entries,33 cellular component entries,and 61 molecular function entries;KEGG analysis yielded 142 signaling pathways,mainly involving TNF signaling pathway,influenza A signaling pathway,Toll-like receptor pathway,MAPK signaling pathway,mTOR signaling pathway and so on.(2)Results of animal experiments:compared with the blank group,mice in the NA model group showed obvious damage to the airway mucosa,structural disorders,a large number of inflammatory cells infiltration,mucosal congestion,oedema,obvious thickening of the alveolar wall,and narrowing of the alveolar lumen;the level of the inflammatory factor IL-8 in the alveolar lavage fluid was significantly elevated(P<0.05);the mRNA expressions of NLRP3 and CXCR2 in the lung tissues of the mice were significantly up-regulated(P<0.01),and the protein expression of p-mTOR was significantly increased.Compared with the NA model group,the structural arrangement of bronchial epithelial cells in the mice in the low-and high-dose groups of Shema Zhichuan Liquid was slightly disordered,with a small amount of inflammatory cell infiltration around the airways and blood vessels,and the congestion and edema of the bronchial mucosa were significantly reduced;the mRNA expression of CXCR2 in the lung tissues of the mice was significantly down-regulated(P<0.01),and the level of expression of p-mTOR protein was significantly reduced.The IL-8 level in the vesicular lavage fluid of mice in the high-dose group was significantly reduced(P<0.05);the mRNA expression of NLRP3 in the lung tissue of mice in the low-dose group was significantly down-regulated(P<0.05).Conclusion The therapeutic effect of Shema Zhichuan Liquid on NA may be achieved through the key active components,such as quercetin,lignocerol and kaempferol,acting on the core targets,such as NLRP3 and CXCR2,and regulating the key signaling pathways,such as the TNF signaling pathway,the MAPK signaling pathway,the Toll-like signaling pathway,and the mTOR pathway.
10.Mitochondrial Quality Control Affects Diabetic Cardiomyopathy:Based on Theory of Qi Deficiency and Stagnation
Aolin LI ; Lu LIAN ; Xinnong CHEN ; Yingyu XIE ; Zhipeng YAN ; Wenhui CAI ; QianQian ZHANG ; Chi ZHANG ; Junping ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(8):197-205
With the increasing incidence of diabetes mellitus in recent years, cardiomyopathy caused by diabetes mellitus has aroused wide concern and this disease is characterized by high insidiousness and high mortality. The early pathological changes of diabetic cardiomyopathy (DCM) are mitochondrial structural disorders and loss of myocardial metabolic flexibility. The turbulence of mitochondrial quality control (MQC) is a key mechanism leading to the accumulation of damaged mitochondria and loss of myocardial metabolic flexibility, which, together with elevated levels of oxidative stress and inflammation, trigger changes in myocardial structure and function. Qi deficiency and stagnation is caused by the loss of healthy Qi, and the dysfunction of Qi transformation results in the accumulation of pathogenic Qi, which further triggers injuries. According to the theory of traditional Chinese medicine (TCM), DCM is rooted in Qi deficiency of the heart, spleen, and kidney. The dysfunction of Qi transformation leads to the generation and lingering of turbidity, stasis, and toxin in the nutrient-blood and vessels, ultimately damaging the heart. Therefore, Qi deficiency and stagnation is the basic pathologic mechanism of DCM. Mitochondria, similar to Qi in substance and function, are one of the microscopic manifestations of Qi. The role of MQC is consistent with the defense function of Qi. In the case of MQC turbulence, mitochondrial structure and function are impaired. As a result, Qi deficiency gradually emerges and triggers pathological changes, which make it difficult to remove the stagnant pathogenic factor and aggravates the MQC turbulence. Ultimately, DCM occurs. Targeting MQC to treat DCM has become the focus of current research, and TCM has the advantages of acting on multiple targets and pathways. According to the pathogenesis of Qi deficiency and stagnation in DCM and the modern medical understanding of MQC, the treatment should follow the principles of invigorating healthy Qi, tonifying deficiency, and regulating Qi movement. This paper aims to provide ideas for formulating prescriptions and clinical references for the TCM treatment of DCM by targeting MQC.

Result Analysis
Print
Save
E-mail