1.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
2.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
3.Clinical characteristics and nutritional status of children with Crohn's disease and risk factors for malnutrition
Dong-Dan LI ; Xiao-Lin YE ; Mei-Chen WANG ; Hong-Mei HUANG ; Jie YAN ; Tian-Zhuo ZHANG ; Fei-Hong YU ; De-Xiu GUAN ; Wen-Li YANG ; Lu-Lu XIA ; Jie WU
Chinese Journal of Contemporary Pediatrics 2024;26(11):1194-1201
Objective To investigate the nutritional status of children with Crohn's Disease (CD) at diagnosis and its association with clinical characteristics. Methods A retrospective analysis was performed for the clinical data and nutritional status of 118 children with CD who were admitted to Beijing Children's Hospital,Capital Medical University,from January 2016 to January 2024. A multivariate logistic regression analysis was used to investigate the risk factors for malnutrition. Results A total of 118 children with CD were included,among whom there were 68 boys (57.6%) and 50 girls (42.4%),with a mean age of (11±4) years. Clinical symptoms mainly included recurrent abdominal pain (73.7%,87/118),diarrhea (37.3%,44/118),and hematochezia (32.2%,38/118),and 63.6% (75/118) of the children had weight loss at diagnosis. The incidence rate of malnutrition was 63.6% (75/118),and the children with moderate or severe malnutrition accounted for 67% (50/75). There were 50 children (42.4%) with emaciation,8 (6.8%) with growth retardation,and 9 (7.6%) with overweight or obesity. Measurement of nutritional indices showed a reduction in serum albumin in 83 children (70.3%),anemia in 74 children (62.7%),and a reduction in 25 hydroxyvitamin D in 15 children (60%,15/25). The children with malnutrition had significantly higher disease activity,proportion of children with intestinal stenosis,and erythrocyte sedimentation rate and a significant reduction in serum albumin (P<0.05). The multivariate logistic regression analysis showed that intestinal stenosis was an independent risk factor for malnutrition in children with CD (OR=4.416,P<0.05). Conclusions There is a high incidence rate of malnutrition in children with CD at diagnosis,which is associated with disease activity and disease behavior. The nutritional status of children with CD should be closely monitored.
4.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
5.Visualized analysis of research hotspots of the treatment of diabetic retinopathy based on CiteSpace and VOSviewer
Juan LING ; Zhuo-Lin XIE ; Li KANG ; Dong-Peng ZHANG ; Hua-Zhi ZHANG ; Xiang-Xia LUO
International Eye Science 2023;23(12):1967-1972
AIM: To analyze the current status, hotspots and trends of studies on the treatments of diabetic retinopathy.METHODS: Relevant literatures on diabetic retinopathy in Chinese National Knowledge Infrastructure(CNKI)and Web of Science core collection database were retrieved from creation to June 15, 2023, and CiteSpace 6.2.R2 and VOSviewer were used to conduct visualized analysis with the country/issuing institution, research author and keywords.RESULTS: A total of 5 919 Chinese literatures and 11 475 English literatures were included. The top three countries with global publications are the United States, China and the United Kingdom, respectively. The top three institutions for issuing articles at abroad are Harvard Medical School, Harvard University and Johns Hopkins University, while the top three institutions for issuing articles in China are the Eye Hospital of China Academy of Chinese Medical Science, Hunan University of Chinese Medicine, and Zhongshan Ophthalmic Center of Sun Yat-sen University. The research results of high-frequency keywords in both Chinese and English show that the laser photocoagulation, vitrectomy, traditional Chinese medicine therapy, vascular endothelial growth factor and ranibizumab are research hotspots.CONCLUSIONS: In recent years, the research hotspots of diabetic retinopathy mainly focus on surgery, vascular protective agents, traditional Chinese medicine therapy, anti-vascular endothelial growth factor, etc., and the research trend mainly focuses on anti-vascular endothelial growth factor drugs.
6.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.
7.NDFIP1 limits cellular TAZ accumulation via exosomal sorting to inhibit NSCLC proliferation.
Yirui CHENG ; Xin LU ; Fan LI ; Zhuo CHEN ; Yanshuang ZHANG ; Qing HAN ; Qingyu ZENG ; Tingyu WU ; Ziming LI ; Shun LU ; Cecilia WILLIAMS ; Weiliang XIA
Protein & Cell 2023;14(2):123-136
NDFIP1 has been previously reported as a tumor suppressor in multiple solid tumors, but the function of NDFIP1 in NSCLC and the underlying mechanism are still unknown. Besides, the WW domain containing proteins can be recognized by NDFIP1, resulted in the loading of the target proteins into exosomes. However, whether WW domain-containing transcription regulator 1 (WWTR1, also known as TAZ) can be packaged into exosomes by NDFIP1 and if so, whether the release of this oncogenic protein via exosomes has an effect on tumor development has not been investigated to any extent. Here, we first found that NDFIP1 was low expressed in NSCLC samples and cell lines, which is associated with shorter OS. Then, we confirmed the interaction between TAZ and NDFIP1, and the existence of TAZ in exosomes, which requires NDFIP1. Critically, knockout of NDFIP1 led to TAZ accumulation with no change in its mRNA level and degradation rate. And the cellular TAZ level could be altered by exosome secretion. Furthermore, NDFIP1 inhibited proliferation in vitro and in vivo, and silencing TAZ eliminated the increase of proliferation caused by NDFIP1 knockout. Moreover, TAZ was negatively correlated with NDFIP1 in subcutaneous xenograft model and clinical samples, and the serum exosomal TAZ level was lower in NSCLC patients. In summary, our data uncover a new tumor suppressor, NDFIP1 in NSCLC, and a new exosome-related regulatory mechanism of TAZ.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Carrier Proteins/metabolism*
;
Cell Line
;
Cell Proliferation
;
Exosomes/metabolism*
;
Lung Neoplasms/genetics*
;
Membrane Proteins/metabolism*
;
Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism*
8.Expressions of long non-coding RNA LINC00673 and ISG15 protein in pancreatic cancer and their clinical significances
Jinfeng WANG ; Shuai CHEN ; Zhuo HE ; Jinhai ZHENG ; Mingjing PENG ; Jinguan LIN ; Junjun LI ; Man XIA ; Hongyu DENG ; Shun DENG ; Rilin DENG ; Haizhen ZHU ; Chaohui ZUO
Cancer Research and Clinic 2023;35(6):451-456
Objective:To explore the expressions of long non-coding RNA LINC00673 and ISG15 protein in pancreatic cancer and their clinical significances.Methods:The clinical data of 57 patients diagnosed as pancreatic ductal carcinoma (PDAC) at the Affiliated Cancer Hospital of Xiangya Medical College of Central South University from January 2014 to December 2018 were retrospectively analyzed. The relative expressions of LINC00673 in pancreatic cancer tissues and paracancerous normal tissues (within 3 cm from the edge of cancer tissues) were examined by using quantificational reverse transcription-polymerase chain reaction (qRT-PCR). The ISG15 protein expressions in pancreatic cancer tissues and paracancerous normal tissues were examined by using immunohistochemistry. The difference in LINC00673 expression between ISG15 protein positive and negative patients was compared. The correlation between LINC00673 and ISG15 protein expressions in pancreatic cancer was analyzed by Spearman rank correlation analysis. Moreover, the correlations of LINC00673 and ISG15 protein expressions with clinical stage and pathological classification of pancreatic cancer patients were analyzed.Results:The positive expression of ISG15 protein in pancreatic cancer tissues was 40.4% (23/57), which was higher than that in paracancerous normal tissues [15.8% (9/57)] ( χ2 = 7.90, P = 0.004), and the relative expression of LINC00673 in pancreatic cancer tissues was 0.99±0.36, which was lower than that in paracancerous normal tissues (1.26±0.41) ( t = 4.80, P < 0.001). For 23 (40.4%) ISG15-positive patients and 34 (59.7%) ISG15-negative patients, the relative expression of LINC00673 was 0.77±0.46 and 0.45±0.27 ( P < 0.001). Spearman analysis showed that there was a correlation between LINC00673 and ISG15 protein expressions ( ρ = -0.429, P = 0.001). The relative expression of LINC00673 decreased in patients with low differentiated or undifferentiated tumor, vascular invasion and lymph node metastasis (all P < 0.05), but there was no correlation between LINC00673 expression and patients' age, tumor site, preoperative CA199 level, and TNM stage (all P > 0.05); ISG15 protein expression increased in patients with low differentiated or undifferentiated tumor, TNM stage Ⅲ-Ⅳ, vascular invasion and lymph node metastasis (all P < 0.05), but there was no correlation between ISG15 protein expression and patients' gender, age, tumor site, and preoperative CA199 level (all P > 0.05). Conclusions:The expression of LINC00673 in pancreatic cancer is related to vascular invasion, tumor differentiation degree and lymph node metastasis, and the expression of ISG15 in pancreatic cancer is related to vascular invasion, tumor differentiation degree, lymph node metastasis and TNM stage. The combined detection of LINC00673 and ISG15 protein could be a valuable prognostic indicator for pancreatic cancer. The therapies targeting LINC00673 and ISG15 protein signaling pathways are expected to be a potential option for immunotherapy of pancreatic cancer.
9.Effect and mechanism of ubiquitin-like protein FAT10 on AngⅡ induced endothelial cell inflammation.
Wen ZHUO ; Xia YAN ; Xiao Qing LI ; Chen CHEN ; Ping YUAN ; Rong WAN ; Kui HONG
Chinese Journal of Cardiology 2023;51(11):1181-1187
Objective: To investigate the role and related mechanism of ubiquitin-like protein FAT10 in the angiotensin Ⅱ (AngⅡ)-induced endothelial cell inflammatory responses. Methods: The Western blot was used to detect the protein expression of FAT10 in 16-weeks old WKY rat carotid artery, thoracic aorta artery, renal artery and vascular smooth muscle cells (VSMC), human umbilical vein endothelial cells (HUVEC) and human breast cancer cells (MDA-MB-231). The optimal concentration and stimulation time of AngⅡ on inducing the highest FAT10 in HUVEC were determined. The following plasmids were constructed: control plasmid, overexpression FAT10 plasmid (Flag-FAT10), invalid interference plasmid, and interference FAT10 plasmid (sh-FAT10). These plasmids were then transfected into HUVEC cells and divided into following groups: control group, Flag-FAT10 group, invalid interference group, and sh-FAT10 group. After culturing with 100 nmol/L AngⅡ for 36 h, the control group and the Flag-FAT10 group were treated with reactive oxygen species scavenger N-acetyl-L-cysteine (NAC), the protein expression levels of the inflammatory factor monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) were measured. Laser confocal microscopy was used to detect the generation levels of reactive oxygen species in the cells of vrious groups. Results: FAT10 was expressed in carotid artery, thoracic aorta, and renal artery of normal blood pressure rats and expressed in HUVEC, VSMC, MDA-MB-231. The expression level of FAT10 gradually increased in proportion to the increase of the time and concentration of AngⅡ stimulation in HUVEC, and the expression level of FAT10 was the highest when the HUVEC was treated with 100 nmol/L AngⅡ for 36 h (P<0.01). The protein expression level of MCP-1 (P<0.001) and TNF-α (P<0.01) was higher in AngⅡ treated HUVEC with FAT10 overexpression, while the expression level of MCP-1 and TNF-α protein was lower in AngⅡ treated HUVEC with FAT10 knockdown (all P<0.01). The level of intracellular reactive oxygen species (ROS) production was significantly increased with FAT10 overexpression (P<0.001), and the level of ROS was decreased when the expression of FAT10 was interfered (P<0.05). The increased level of MCP-1 and TNF-α proteins in FAT10 overexpressed HUVEC was reversed by NAC (all P<0.05). Conclusion: FAT10 promotes the release of inflammatory factors induced by AngⅡ in endothelial cells by increasing the level of intracellular ROS production.
Humans
;
Rats
;
Animals
;
Reactive Oxygen Species/pharmacology*
;
Cells, Cultured
;
Angiotensin II/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Rats, Inbred WKY
;
Human Umbilical Vein Endothelial Cells
;
Inflammation
;
Ubiquitins/pharmacology*
10.Application of bridging study design in preventive vaccine clinical trials.
Ya Wen ZHU ; Xin XIA ; Zhuo Pei LI ; Yan Fei WU ; Feng Cai ZHU ; Jing Xin LI
Chinese Journal of Preventive Medicine 2023;57(12):2201-2211
Bridging study in vaccine clinical trials means a series of small-scale additional tests on the basis that the original safety and effectiveness of a vaccine have been confirmed in clinical trials, to prove that the characteristics of safety, immunogenicity and effectiveness of a vaccine are similar or consistent after component, population and immunization procedure change to other types which can extrapolate data from existing clinical trials. Compared with traditional vaccine clinical trials, bridging trials can promote the approval of vaccines to the market, accelerate the expansion of vaccine application, and promote the use of vaccines across regions and populations. In recent years, the application of bridge study design in vaccine clinical research has become more and more common. In order to better guide and promote the application of bridging trial design in the field of vaccine clinical research, we reviewed the design characteristics and application examples of bridging study design in vaccine clinical trials, and systematically elaborated the design ideas, key points and statistical evaluation methods of bridging study.
Humans
;
Research Design
;
Biomedical Research
;
Immunization
;
Vaccines/therapeutic use*

Result Analysis
Print
Save
E-mail