1.Research on The Role of Dopamine in Regulating Sleep and Wakefulness Through Exercise
Li-Juan HOU ; Ya-Xuan GENG ; Ke LI ; Zhao-Yang HUANG ; Lan-Qun MAO
Progress in Biochemistry and Biophysics 2025;52(1):88-98
Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze the mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for ventral tegmental area DA neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to introduce the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
2.Annual review of basic research on lung transplantation of China in 2024
Jier MA ; Junmin ZHU ; Lan ZHANG ; Xiaohan JIN ; Xiangyun ZHENG ; Senlin HOU ; Zengwei YU ; Yaling LIU ; Haoji YAN ; Dong TIAN
Organ Transplantation 2025;16(3):386-393
Lung transplantation is the optimal treatment for end-stage lung diseases and can significantly improve prognosis of the patients. However, postoperative complications such as infection, rejection, ischemia-reperfusion injury, and other challenges (like shortage of donor lungs) , limit the practical application of lung transplantation in clinical practice. Chinese research teams have been making continuous efforts and have achieved breakthroughs in basic research on lung transplantation by integrating emerging technologies and cutting-edge achievements from interdisciplinary fields, which has strongly propelled the development of this field. This article will comprehensively review the academic progress made by Chinese research teams in the field of lung transplantation in 2024, with a focus on the achievements of Chinese teams in basic research on lung transplantation. It aims to provide innovative ideas and strategies for key issues in the basic field of lung transplantation and to help China's lung transplantation cause reach a higher level.
3.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
4.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
5.Rapid Determination of 32 Kinds of Veterinary Drug Residues in Eggs Using Modified QuEChERS Based on Reduced Graphene Oxide-coated Melamine Sponge by Ultra-High Liquid Chromatography-Tandem Mass Spectrometry
Xu XU ; Jia LYU ; Lan-Rui YANG ; Zhu-Chen HOU ; Bao-Cheng JI ; Yan-Hong BAI
Chinese Journal of Analytical Chemistry 2024;52(1):121-129,中插38-中插43
A rapid analytical method for simultaneous determination of 32 kinds of multi-residue veterinary drugs in eggs was developed using a modified QuEChERS technique based on a reduced graphene oxide-coated melamine sponge(r-GO@MeS)by ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS).The influences of graphene oxide(GO)concentrations,sponge dosages,and purification modes on drug recoveries were investigated during the purification process.The optimal purification conditions involved using a GO concentration of 0.5 mg/mL,a sponge dosage of 6.0 cm3/mL,and a dynamic purification mode of 5 extrusion cycles.Separation was achieved using an Agilent Eclipse Plus C18 RRHD column(100 mm×2.1 mm,1.8 μm),and quantitative analysis was performed by the external standard method using an electrospray ionization source(ESI)in multiple reaction monitoring(MRM)mode.The results showed that all 32 kinds of veterinary drugs exhibited good linear correlation with coefficients greater than 0.999,and matrix effects(MEs)ranging from?7.8%to 18.9%.The limits of detection(LODs)and quantification(LOQs)ranged from 0.2 to 10.2 μg/kg and from 0.6 to 28.0 μg/kg,respectively.The recoveries for the three spiked levels were in the range of 66.5%?117.5%,with intra-day and inter-day precision(Relative standard deviation)below 13.3%and 16.3%,respectively.The synthetic r-GO@MeS exhibited efficient matrix purification without the need of high-speed centrifugation or strong magnetic field assistance.This significantly shorted the sample pretreatment time and improved the convenience of the matrix purification process.Combined with UPLC-MS/MS,the method was suitable for the rapid determination of multi-residue veterinary drugs in eggs.
6.Detection of Amantadine by Label-free Fluorescence Method Based on Truncated Aptamer and Molybdenum Disulfide Nanosheet Signal Enhancement Strategy
Yi-Feng LAN ; Bo-Ya HOU ; Zhi-Wen WEI ; Wen LIU ; Chao ZHANG ; Ya-Hui ZUO ; Ke-Ming YUN
Chinese Journal of Analytical Chemistry 2024;52(2):208-219,中插4-中插7
Amantadine(AMD)residue can accumulate in organisms through the food chain and cause serious harm to human body.AMD can specifically bind to AMD specific aptamer and cause its conformation to change from a random single strand to a stem-loop structure.To avoid the influence of excess nucleotides on binding of aptamer to AMD,the truncation of the AMD original aptamer J was optimized by retaining an appropriate stem-loop structure,and a new type of truncation aptamers was developed in this work.By comparing the truncated aptamer with the original aptamer,it was found that the truncated aptamer J-7 had better affinity and specificity with AMD.The detection limit of AMD was 0.11 ng/mL by using J-7 as specific recognition element and molybdenum disulfide nanosheet(MoS2Ns)as signal amplification element.The developed method base on truncated aptamer J-7 was used for detection of AMD in milk,yogurt and SD rat serum samples for the first time with recoveries of 86.6%-108.2%.This study provided a reference for truncating other long sequence aptamers and provided a more sensitive detection method for monitoring AMD residues in food.
7.Regulatory effect mechanism of Eucommia ulmoides on postpartum depression in rats
Yujie LI ; Wenjing CHEN ; Lan ZHANG ; Yingzhen WU ; Yongjie XU ; Xiaolan WANG ; Junlin HOU ; Liping YANG
China Pharmacy 2024;35(11):1303-1308
OBJECTIVE To explore the effect mechanism of Eucommia ulmoides on improving postpartum depression in rats. METHODS Pregnant rats were randomly divided into normal group, postpartum depression group, and low-dose and high-dose groups of E. ulmoides (1.34, 2.68 g/kg, calculated by crude drug), with 10 rats in each group. Except for the normal group, the rats in other groups suffered from fear stress to induce postpartum depression model during pregnancy; at the same time of modeling, the administration groups were given relevant medicine intragastrically, while the normal group and postpartum depression group were given physiological saline intragastrically for 21 days. Postpartum behaviors of rats during the experiment were assessed using the open field test, Morris water maze test and sucrose preference test. Additionally, the levels of corticosterone (CORT) in serum, corticotropin releasing factor (CRF) and urocortin (UCN) in hypothalamus, and adrenocorticotropic hormone (ACTH) in hypophysis were detected; meanwhile, the protein expressions of CRF receptor 1 (CRFR1), CRFR2, and voltage-dependent anion channel 1 (VDAC1) in hippocampal tissue were measured; the proportions of apoptotic cells and JC-1 high potential cells in hippocampal tissue were determined, and the morphology of hippocampal tissue was observed. RESULTS Compared with postpartum depression group, the high-dose group of E. ulmoides showed improvements in appetite, mental state, and hair color in rats; their body weight had increased; the scores of vertical movement, horizontal movement and self-sorting significantly increased; from the 2ed to 4th day avoidance latency significantly shortened, and the times of crossing the platform and the time of crossing the platform Δ 基金项目国家自然科学基金青年基金项目(No.82204789) significantly increased/prolonged (P<0.05); the ratio of glucose and water consumption significantly increased at 20 days of pregnancy and 30 days postpartum (P<0.05); the levels of CRF, UCN, ACTH and CORT, phagocytic rate, protein expressions of CRFR2 and VDAC1, and the proportion of apoptosis cells in hippocampal tissue were decreased significantly (P<0.05); the proportion of JC-1 high potential cells significantly increased (P<0.05), and the phenomenon of edema around neuronal cells was significantly improved. CONCLUSIONS E. ulmoides can improve postpartum depression by inhibiting excessive activation of hypothalamic-pituitary-adrenal axis, decreasing the expression of CRFR2, thereby inhibiting the expression of VDAC1, and decreasing the apoptosis of neuronal cells.
8.Regulatory effect mechanism of Eucommia ulmoides on postpartum depression in rats
Yujie LI ; Wenjing CHEN ; Lan ZHANG ; Yingzhen WU ; Yongjie XU ; Xiaolan WANG ; Junlin HOU ; Liping YANG
China Pharmacy 2024;35(11):1303-1308
OBJECTIVE To explore the effect mechanism of Eucommia ulmoides on improving postpartum depression in rats. METHODS Pregnant rats were randomly divided into normal group, postpartum depression group, and low-dose and high-dose groups of E. ulmoides (1.34, 2.68 g/kg, calculated by crude drug), with 10 rats in each group. Except for the normal group, the rats in other groups suffered from fear stress to induce postpartum depression model during pregnancy; at the same time of modeling, the administration groups were given relevant medicine intragastrically, while the normal group and postpartum depression group were given physiological saline intragastrically for 21 days. Postpartum behaviors of rats during the experiment were assessed using the open field test, Morris water maze test and sucrose preference test. Additionally, the levels of corticosterone (CORT) in serum, corticotropin releasing factor (CRF) and urocortin (UCN) in hypothalamus, and adrenocorticotropic hormone (ACTH) in hypophysis were detected; meanwhile, the protein expressions of CRF receptor 1 (CRFR1), CRFR2, and voltage-dependent anion channel 1 (VDAC1) in hippocampal tissue were measured; the proportions of apoptotic cells and JC-1 high potential cells in hippocampal tissue were determined, and the morphology of hippocampal tissue was observed. RESULTS Compared with postpartum depression group, the high-dose group of E. ulmoides showed improvements in appetite, mental state, and hair color in rats; their body weight had increased; the scores of vertical movement, horizontal movement and self-sorting significantly increased; from the 2ed to 4th day avoidance latency significantly shortened, and the times of crossing the platform and the time of crossing the platform Δ 基金项目国家自然科学基金青年基金项目(No.82204789) significantly increased/prolonged (P<0.05); the ratio of glucose and water consumption significantly increased at 20 days of pregnancy and 30 days postpartum (P<0.05); the levels of CRF, UCN, ACTH and CORT, phagocytic rate, protein expressions of CRFR2 and VDAC1, and the proportion of apoptosis cells in hippocampal tissue were decreased significantly (P<0.05); the proportion of JC-1 high potential cells significantly increased (P<0.05), and the phenomenon of edema around neuronal cells was significantly improved. CONCLUSIONS E. ulmoides can improve postpartum depression by inhibiting excessive activation of hypothalamic-pituitary-adrenal axis, decreasing the expression of CRFR2, thereby inhibiting the expression of VDAC1, and decreasing the apoptosis of neuronal cells.
9.Construction and validation of an in-hospital mortality risk prediction model for patients receiving VA-ECMO:a retrospective multi-center case-control study
Yue GE ; Jianwei LI ; Hongkai LIANG ; Liusheng HOU ; Liuer ZUO ; Zhen CHEN ; Jianhai LU ; Xin ZHAO ; Jingyi LIANG ; Lan PENG ; Jingna BAO ; Jiaxin DUAN ; Li LIU ; Keqing MAO ; Zhenhua ZENG ; Hongbin HU ; Zhongqing CHEN
Journal of Southern Medical University 2024;44(3):491-498
Objective To investigate the risk factors of in-hospital mortality and establish a risk prediction model for patients receiving venoarterial extracorporeal membrane oxygenation(VA-ECMO).Methods We retrospectively collected the data of 302 patients receiving VA-ECMO in ICU of 3 hospitals in Guangdong Province between January,2015 and January,2022 using a convenience sampling method.The patients were divided into a derivation cohort(201 cases)and a validation cohort(101 cases).Univariate and multivariate logistic regression analyses were used to analyze the risk factors for in-hospital death of these patients,based on which a risk prediction model was established in the form of a nomogram.The receiver operator characteristic(ROC)curve,calibration curve and clinical decision curve were used to evaluate the discrimination ability,calibration and clinical validity of this model.Results The in-hospital mortality risk prediction model was established based the risk factors including hypertension(OR=3.694,95%CI:1.582-8.621),continuous renal replacement therapy(OR=9.661,95%CI:4.103-22.745),elevated Na2+ level(OR=1.048,95%CI:1.003-1.095)and increased hemoglobin level(OR=0.987,95%CI:0.977-0.998).In the derivation cohort,the area under the ROC curve(AUC)of this model was 0.829(95%CI:0.770-0.889),greater than those of the 4 single factors(all AUC<0.800),APACHE Ⅱ Score(AUC=0.777,95%CI:0.714-0.840)and the SOFA Score(AUC=0.721,95%CI:0.647-0.796).The results of internal validation showed that the AUC of the model was 0.774(95%CI:0.679-0.869),and the goodness of fit test showed a good fitting of this model(χ2=4.629,P>0.05).Conclusion The risk prediction model for in-hospital mortality of patients on VA-ECMO has good differentiation,calibration and clinical effectiveness and outperforms the commonly used disease severity scoring system,and thus can be used for assessing disease severity and prognostic risk level in critically ill patients.
10.Expert consensus on difficulty assessment of endodontic therapy
Huang DINGMING ; Wang XIAOYAN ; Liang JINGPING ; Ling JUNQI ; Bian ZHUAN ; Yu QING ; Hou BENXIANG ; Chen XINMEI ; Li JIYAO ; Ye LING ; Cheng LEI ; Xu XIN ; Hu TAO ; Wu HONGKUN ; Guo BIN ; Su QIN ; Chen ZHI ; Qiu LIHONG ; Chen WENXIA ; Wei XI ; Huang ZHENGWEI ; Yu JINHUA ; Lin ZHENGMEI ; Zhang QI ; Yang DEQIN ; Zhao JIN ; Pan SHUANG ; Yang JIAN ; Wu JIAYUAN ; Pan YIHUAI ; Xie XIAOLI ; Deng SHULI ; Huang XIAOJING ; Zhang LAN ; Yue LIN ; Zhou XUEDONG
International Journal of Oral Science 2024;16(1):15-25
Endodontic diseases are a kind of chronic infectious oral disease.Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha.However,it is very essential for endodontic treatment to debride the root canal system and prevent the root canal system from bacterial reinfection after root canal therapy(RCT).Recent research,encompassing bacterial etiology and advanced imaging techniques,contributes to our understanding of the root canal system's anatomy intricacies and the technique sensitivity of RCT.Success in RCT hinges on factors like patients,infection severity,root canal anatomy,and treatment techniques.Therefore,improving disease management is a key issue to combat endodontic diseases and cure periapical lesions.The clinical difficulty assessment system of RCT is established based on patient conditions,tooth conditions,root canal configuration,and root canal needing retreatment,and emphasizes pre-treatment risk assessment for optimal outcomes.The findings suggest that the presence of risk factors may correlate with the challenge of achieving the high standard required for RCT.These insights contribute not only to improve education but also aid practitioners in treatment planning and referral decision-making within the field of endodontics.

Result Analysis
Print
Save
E-mail