1.Exploring Multi-target Effect of Erzhiwan on Improving Myocardial Injury in Ovariectomized Mice Based on Non-targeted Metabolomics
Ying YANG ; Jing HU ; Pei LI ; Ruyuan ZHU ; Zhiguo ZHANG ; Haixia LIU ; Yanjing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):74-84
ObjectiveTo explore the target of Erzhiwan in reducing myocardial injury in ovariectomized mice through non-targeted myocardial metabolomics combined with experimental verification. MethodsOvariectomized mouse model was selected, 40 female C57BL/6 mice were randomly divided into sham operation group, model group, estrogen group(estradiol valerate, 1.3×10-4 g·kg-1), Erzhiwan low and high dose groups(3.12, 9.36 g·kg-1), with 8 mice in each group. Each administration group was given the corresponding dose of Erzhiwan by gavage, and the sham operation group and model group were given equal volume of distilled water by gavage for 12 weeks. Echocardiography was used to detect cardiac function, hematoxylin-eosin(HE) staining was used to observe myocardial morphological changes, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of estrogen, N-terminal pro-brain natriuretic peptide(NT-proBNP), hypersensitive troponin T(hs-TnT), total cholesterol(TC), triglyceride(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), interleukin(IL)-1β, IL-18 and tumor necrosis factor-α(TNF-α). The non-targeted metabolomics of mouse myocardium were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites and corresponding metabolic pathways were obtained. The mRNA expression levels of phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in mouse myocardial tissues were detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression levels of PI3K, Akt, phosphorylated(p)-Akt were detected by Western blot. ResultsCompared with the sham operation group, the model group showed abnormal cardiac function, increased myocardial fiber space, cardiomyocyte atrophy, sarcoplasmic aggregation, and occasional dissolution or rupture of muscle fiber, the level of estrogen in the serum was decreased, the levels of NT-proBNP, hs-TnT, IL-1β, IL-18, TNF-α, TG, TC and LDL-C were increased, and the level of HDL-C was decreased(P<0.01). Compared with the model group, Erzhiwan could increase the level of estrogen, improve the abnormal cardiac function, reduce the pathological injury of myocardial tissue, decrease the levels of myocardial injury markers(NT-proBNP, hs-TnT) and inflammatory factors(IL-1β, IL-18, TNF-α), decrease the levels of TG, TC, LDL-C, and increased the level of HDL-C(P<0.01). The results of non-targeted myocardial metabolomics showed that 31 of the 162 differential metabolites between the model group and sham operation group were significantly adjusted after administration of Erzhiwan, which were mainly glycerol phospholipid metabolites. Pathway enrichment results showed that Erzhiwan mainly affected glycerophospholipid metabolic pathway, PI3K-Akt pathway, cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG) pathway and other metabolic pathways. Compared with the sham operation group, the levels of phosphatidylcholine(PC, 11 types) and phosphatidylethanolamine(PE, 5 types) in mouse myocardial tissue of the model group were increased(P<0.05, P<0.01), and the mRNA and protein expressions of PI3K and p-Akt were decreased(P<0.05, P<0.01). Compared with the model group, the levels of PC(11 types) and PE(5 types) were decreased(P<0.05, P<0.01) in myocardial tissue of Erzhiwan group, the mRNA and protein expressions of PI3K and p-Akt were elevated(P<0.01). ConclusionErzhiwan can alleviate the pathological injury of myocardium in ovariectomized mice, improve the abnormal cardiac function, improve lipid metabolism disorder, and reduce the levels of myocardial injury markers and inflammatory factors, which involves a number of signaling and metabolic pathways in the heart, among which glycerophospholipid metabolism pathway and PI3K/Akt pathway may have key roles.
2.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
3.Effect of Rhei Radix et Rhizoma Before and After Steaming with Wine on Intestinal Flora and Immune Environment in Constipation Model Mice
Yaya BAI ; Rui TIAN ; Yajun SHI ; Chongbo ZHAO ; Jing SUN ; Li ZHANG ; Yonggang YAN ; Yuping TANG ; Qiao ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):192-199
ObjectiveTo study on the different therapeutic effects and potential mechanisms of Rhei Radix et Rhizoma(RH) before and after steaming with wine on constipation model mice. MethodsFifty-four male ICR mice were randomly divided into control group, model group, lactulose group(1.5 mg·kg-1), high, medium and low dose groups of RH and RH steaming with wine(PRH)(8, 4, 1 g·kg-1). Except for the control group, the constipation model was replicated by gavage of loperamide hydrochloride(6 mg·kg-1) in the other groups. After 2 weeks of modeling, each administration group was gavaged with the corresponding dose of drug solution, and the control and model groups were given an equal volume of normal saline, 1 time/d for 2 consecutive weeks. After administration, the feces were collected for 16S rRNA sequencing, the levels of gastrin(GAS), motilin(MTL), interleukin-6(IL-6), γ-interferon(IFN-γ) in the colonic tissue were detected by enzyme-linked immunosorbent assay(ELISA), the histopathological changes of colon were observed by hematoxylin-eosin(HE) staining, flow cytometry was used to detect the proportion changes of CD4+, CD8+ and regulatory T cell(Treg) in peripheral blood. ResultsCompared with the control group, the model group showed significantly decrease in fecal number in 24 h, fecal quality and fecal water rate(P<0.01), the colon was seen to have necrotic shedding of mucosal epithelium, localized intestinal glands in the lamina propria were degenerated, necrotic and atrophied, a few lymphocytes were seen to infiltrate in the necrotic area in a scattered manner, the contents of GAS and MTL, the proportions of CD4+, CD8+ and Treg were significantly reduced(P<0.01), the contents of IL-6 and IFN-γ were significantly elevated(P<0.05, P<0.01). Compared with the model group, the fecal number in 24 h, fecal quality and fecal water rate of high-dose groups of RH and PRH were significantly increased(P<0.05, P<0.01), the pathological damage of the colon was alleviated to varying degrees, the contents of GAS, MTL, IL-6 and IFN-γ were significantly regressed(P<0.05, P<0.01), and the proportions of CD4+ and CD8+ were significantly increased(P<0.01), although the proportion of Treg showed an upward trend, there was no significant difference. In addition, the results of intestinal flora showed that the number of amplicon sequence variant(ASV) and Alpha diversity were decreased in the model group compared with the control group, and there was a significant difference in Beta diversity, with a decrease in the relative abundance of Lactobacillus and an increase in the relative abundances of Bacillus and Helicobacter. Compared with the model group, the ASV number and Alpha diversity were increased in the high-dose groups of RH and PRH, and there was a trend of regression of Beta diversity to the control group, the relative abundance of Lactobacillus increased, and the relative abundances of Bacillus and Helicobacter decreased. ConclusionRH and PRH can improve dysbacteriosis, promote immune system activation, inhibit the release of inflammatory factors for enhancing the gastrointestinal function, which may be one of the potential mechanisms of their therapeutic effect on constipation.
4.Traditional Chinese Medicine Treats Sepsis by Regulating PI3K/Akt Pathway: A Review
Zhu LIU ; Jiawei WANG ; Jing YAN ; Jinchan PENG ; Mingyao XU ; Liqun LI ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):314-322
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms such as bacteria. In addition to the manifestations of systemic inflammatory response syndrome and primary infection lesions, critical cases often have manifestations of organ hypoperfusion. The morbidity and mortality of sepsis have remained high in recent years, which seriously affect the quality of life of the patients. The pathogenesis of sepsis is complicated, in which uncontrollable inflammation is a key mechanism. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway plays a key role in mediating inflammation in sepsis. The available therapies of sepsis mainly include resuscitation, anti-infection, vasoactive drugs, intensive insulin therapy, and organ support, which show limited effects of reducing the mortality. Therefore, finding new therapeutic drugs is a key problem to be solved in the clinical treatment of sepsis. In recent years, studies have shown that traditional Chinese medicine (TCM) can regulate the PI3K/Akt pathway via multiple pathways, multiple effects, and multiple targets to inhibit inflammation and curb the occurrence and development of sepsis, which has gradually become a hot spot in the prevention and treatment of sepsis. Moreover, studies have suggested that TCM has unique advantages in the treatment of sepsis. TCM can regulate the PI3K/Akt signaling pathway to inhibit inflammation, reduce oxidative stress, and control apoptosis in the prevention and treatment of sepsis. Despite the research progress, a systematic review remains to be performed regarding the TCM treatment of sepsis by regulating the PI3K/Akt signaling pathway. After reviewing relevant papers published in recent years, this study systematically summarizes the relationship between PI3K/Akt pathway and sepsis and the role of TCM in the treatment of sepsis, aiming to provide new ideas for the potential treatment of sepsis and the development of new drugs.
5.Construction of PD-L1hitol-DC derived from bone marrow of DA rats and identification of its immunological function
Zhiqi YANG ; Peibo HOU ; Lang WU ; Jing LIU ; Yang DING ; Minghao LI
Organ Transplantation 2025;16(1):83-90
Objective To construct programmed cell death protein-ligand 1(PD-LI)hi tolerogenic dendritic cell (tol-DC) derived from bone marrow of DA rats and identify its immunological function. Methods DA rat bone marrow cells were extracted, combined with recombinant mouse granulocyte macrophage colony-stimulating factor and recombinant mouse interleukin (IL)-4, and cultured for 6 days in vitro to induce the differentiation of bone marrow cells into immature dendritic cells (imDC). Lipopolysaccharide was used to stimulate cell maturation and cultured for 2 days to collect mature dendritic cells (mDC). PD-L1 lentiviral vector virus stock solution or equivalent dose lentiviral stock solution was added, and PD-L1hitol-DC and Lv-imDC were collected after culture for 2 days. The morphology of PD-L1hitol-DC was observed by inverted phase contrast microscope and transmission electron microscope. Real-time fluorescence quantitative reverse transcription polymerase chain reaction, Western blotting and flow cytometry were used to detect the expression level of specific markers on cell surface. CD8+T cells derived from Lewis rat spleen were co-cultured with imDC, mDC, Lv-imDC and PD-L1hitol-DC, respectively. The levels of inflammatory factors in the supernatant of each group were detected by enzyme-linked immunosorbent assay. The apoptosis of T cells and the differentiation of regulatory T cells (Treg) in each group were analyzed by flow cytometry. Results The morphology of PD-L1hitol-DC modified by PD-L1 gene was consistent with tol-DC characteristics, and the expression levels of CD80, CD86 and major histocompatibility complex (MHC) on the surface were low. After mixed culture with CD8+ T cells, the levels of IL-10 and transforming growth factor (TGF) -β1 in the supernatant of PD-L1hitol-DC group were higher, the levels of tumor necrosis factor (TNF) -α and IL-17A were lower, and the apoptosis of T cells and Treg differentiation were increased. Conclusions Overexpression of PD-L1 through lentiviral vectors may successfully induce the construction of bone-marrow derived PD-L1hitol-DC in DA rats, promote the secretion of anti-inflammatory factors and T cell apoptosis, induce the differentiation of Treg, and inhibit the immune response of allogeneic CD8+T cells, which provides experimental basis for the next organ transplantation immune tolerance study.
6.Insights on Peripheral Blood Biomarkers for Parkinson’s Disease
Yu-Meng LI ; Jing-Kai LIU ; Zi-Xuan CHEN ; Yu-Lin DENG
Progress in Biochemistry and Biophysics 2025;52(1):72-87
Parkinson’s disease (PD) is a common neurodegenerative disorder with profound impact on patients’ quality of life and long-term health, and early detection and intervention are particularly critical. In recent years, the search for precise and reliable biomarkers has become one of the key strategies to effectively address the clinical challenges of PD. In this paper, we systematically evaluated potential biomarkers, including proteins, metabolites, epigenetic markers, and exosomes, in the peripheral blood of PD patients. Protein markers are one of the main directions of biomarker research in PD. In particular, α‑synuclein and its phosphorylated form play a key role in the pathological process of PD. It has been shown that aggregation of α-synuclein may be associated with pathologic protein deposition in PD and may be a potential marker for early diagnosis of PD. In terms of metabolites, uric acid, as a metabolite, plays an important role in oxidative stress and neuroprotection in PD. It has been found that changes in uric acid levels may be associated with the onset and progression of PD, showing its potential as an early diagnostic marker. Epigenetic markers, such as DNA methylation modifications and miRNAs, have also attracted much attention in Parkinson’s disease research. Changes in these markers may affect the expression of PD-related genes and have an important impact on the onset and progression of the disease, providing new research perspectives for the early diagnosis of PD. In addition, exosomes, as a potential biomarker carrier for PD, are able to carry a variety of biomolecules involved in intercellular communication and pathological regulation. Studies have shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide a new breakthrough for early diagnosis. It has been shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide new breakthroughs in early diagnosis. In summary, through in-depth evaluation of biomarkers in the peripheral blood of PD patients, this paper demonstrates the important potential of these markers in the early diagnosis of PD and in the study of pathological mechanisms. Future studies will continue to explore the clinical application value of these biomarkers to promote the early detection of PD and individualized treatment strategies.
7.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
8.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
9.Effect and mechanism of Prunus mume against hepatic fibrosis
Feng HAO ; Ji LI ; Jing DU ; Yuchen OUYANG ; Yichun CUI ; Shuang WEI
China Pharmacy 2025;36(2):172-178
OBJECTIVE To explore the effect and mechanism of Prunus mume against hepatic fibrosis (HF). METHODS Male SD rats were randomly divided into normal control group (n=10) and modeling group (n=50). The modeling group established HF model using carbon tetrachloride. The modeled rats were randomly divided into model group (normal saline), positive control group [colchicine, 0.09 mg/(kg·d)], and P. mume low-dose, medium-dose and high-dose groups [1.35, 2.70, 5.40 g/(kg·d)], with 9 rats in each group. They were given the corresponding drug/normal saline intragastrically, once a day, for 8 consecutive weeks. After the last medication, the liver index was calculated, while liver function indexes, liver fiber indexes, oxidative stress indicators and inflammatory factors of rats were measured. HE staining was used to observe the pathological changes in liver tissue of rats; Masson staining was used to observe the degree of HF in liver tissue of rats; transmission electron microscopy was used to observe the ultrastructure of liver tissue in rats; TUNEL staining was used to detect liver cell apoptosis in each group of rats. Western blot method was used to detect the protein expressions of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) in liver tissue of rats. RESULTS Compared with normal control group, the levels of alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin, malondialdehyde, procollagen type Ⅲ protein, Ⅳ-type pre collagenase, laminin, hyaluronic acid, interleukin-6, tumor necrosis factor-α, as well as the protein expressions of TGF-β1 and PDGF in model group were increased significantly, while the levels of superoxide dismutase and glutathione peroxidase were significantly reduced (P<0.01); the HE, Masson staining and transmission electron microscopy observation results showed obvious HF characteristics in rats of model group. Compared with model group, varying degrees of improvement in above indexes were observed in P. mume groups, and the above 2021BSZR011) indicators of rats in P. mume medium-dose and high-dose groups were reversed significantly (P<0.05 or P<0.01). CONCLUSIONS P. mume has an anti-HF effect, which may be achieved through mechanisms such as antioxidation, anti-inflammation, reduction of collagen production, inhibition of PDGF protein expression, and regulation of TGF- β1 signaling pathway.
10.The Effect of Fuzheng Huaji Formula (扶正化积方) for Chronic Hepatitis B on Reduction of the Incidence of Liver Cirrhosis and Hepatocellular Carcinoma:A Retrospective Cohort Study
Simiao YU ; Jiahui LI ; Jing JING ; Tingting HE ; Yongqiang SUN ; Liping WANG ; Aozhe ZHANG ; Xiaohe XIAO ; Xia DING ; Ruilin WANG
Journal of Traditional Chinese Medicine 2025;66(3):268-274
ObjectiveTo evaluate the clinical efficacy of Fuzheng Huaji Formula (扶正化积方) for chronic hepatitis B to reduce the incidence of liver cirrhosis and hepatocellular carcinoma. MethodsA retrospective cohort study was conducted, collecting medical records of 118 patients with chronic hepatitis B and 234 patients with hepatitis B-related cirrhosis who visited the hospital between January 1, 2014, and December 31, 2018. The use of Fuzheng Huaji Formula was designated as the exposure factor. Patients receiving antiviral treatment for hepatitis B without concurrent Fuzheng Huaji Formula therapy were included in the western medicine group, while those receiving antiviral treatment combined with Fuzheng Huaji Formula for a cumulative treatment lasting longer than 3 months were included in the combined treatment group. The follow-up observation period was five years. Kaplan-Meier survival analysis was used to assess the cumulative incidence of cirrhosis in patients with chronic hepatitis B and the cumulative incidence of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis. Univariate and multivariate Cox regression analyses were employed to examine the factors influencing the occurrence of cirrhosis and hepatocellular carcinoma. ResultsAmong patients with chronic hepatitis B, there were 55 cases in the combined treatment group and 63 cases in the western medicine group; among patients with hepatitis B-related cirrhosis, there were 110 cases in the combined treatment group and 124 cases in the western medicine group. Five-year follow-up outcomes for chronic hepatitis B patients showed that the cumulative incidence of cirrhosis was 5.45% (3/55) in the combined treatment group and 17.46% (11/63) in the western medicine group, with a statistically significant difference between groups (Z = 2.003, P = 0.045). Five-year follow-up outcomes for hepatitis B-related cirrhosis patients showed that the cumulative incidence of hepatocellular carcinoma was 8.18% (9/110) in the combined treatment group and 22.58% (28/124) in the western medicine group, also showing a statistically significant difference (Z = 3.007, P = 0.003). Univariate and multivariate Cox regression analyses indicated that treatment with Fuzheng Huaji Formula is an independent protective factor in preventing the progression of chronic hepatitis B to cirrhosis and the progression of hepatitis B-related cirrhosis to hepatocellular carcinoma (P<0.05). ConclusionCombining Fuzheng Huaji Formula with antiviral therapy for hepatitis B can effectively intervene in the disease progression of chronic hepatitis B, reducing the incidence of cirrhosis and hepatocellular carcinoma.

Result Analysis
Print
Save
E-mail