1.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
2.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.YOLOX-SwinT algorithm improves the accuracy of AO/OTA classification of intertrochanteric fractures by orthopedic trauma surgeons.
Xue-Si LIU ; Rui NIE ; Ao-Wen DUAN ; Li YANG ; Xiang LI ; Le-Tian ZHANG ; Guang-Kuo GUO ; Qing-Shan GUO ; Dong-Chu ZHAO ; Yang LI ; He-Hua ZHANG
Chinese Journal of Traumatology 2025;28(1):69-75
PURPOSE:
Intertrochanteric fracture (ITF) classification is crucial for surgical decision-making. However, orthopedic trauma surgeons have shown lower accuracy in ITF classification than expected. The objective of this study was to utilize an artificial intelligence (AI) method to improve the accuracy of ITF classification.
METHODS:
We trained a network called YOLOX-SwinT, which is based on the You Only Look Once X (YOLOX) object detection network with Swin Transformer (SwinT) as the backbone architecture, using 762 radiographic ITF examinations as the training set. Subsequently, we recruited 5 senior orthopedic trauma surgeons (SOTS) and 5 junior orthopedic trauma surgeons (JOTS) to classify the 85 original images in the test set, as well as the images with the prediction results of the network model in sequence. Statistical analysis was performed using the SPSS 20.0 (IBM Corp., Armonk, NY, USA) to compare the differences among the SOTS, JOTS, SOTS + AI, JOTS + AI, SOTS + JOTS, and SOTS + JOTS + AI groups. All images were classified according to the AO/OTA 2018 classification system by 2 experienced trauma surgeons and verified by another expert in this field. Based on the actual clinical needs, after discussion, we integrated 8 subgroups into 5 new subgroups, and the dataset was divided into training, validation, and test sets by the ratio of 8:1:1.
RESULTS:
The mean average precision at the intersection over union (IoU) of 0.5 (mAP50) for subgroup detection reached 90.29%. The classification accuracy values of SOTS, JOTS, SOTS + AI, and JOTS + AI groups were 56.24% ± 4.02%, 35.29% ± 18.07%, 79.53% ± 7.14%, and 71.53% ± 5.22%, respectively. The paired t-test results showed that the difference between the SOTS and SOTS + AI groups was statistically significant, as well as the difference between the JOTS and JOTS + AI groups, and the SOTS + JOTS and SOTS + JOTS + AI groups. Moreover, the difference between the SOTS + JOTS and SOTS + JOTS + AI groups in each subgroup was statistically significant, with all p < 0.05. The independent samples t-test results showed that the difference between the SOTS and JOTS groups was statistically significant, while the difference between the SOTS + AI and JOTS + AI groups was not statistically significant. With the assistance of AI, the subgroup classification accuracy of both SOTS and JOTS was significantly improved, and JOTS achieved the same level as SOTS.
CONCLUSION
In conclusion, the YOLOX-SwinT network algorithm enhances the accuracy of AO/OTA subgroups classification of ITF by orthopedic trauma surgeons.
Humans
;
Hip Fractures/diagnostic imaging*
;
Orthopedic Surgeons
;
Algorithms
;
Artificial Intelligence
7.New perspectives on microbiome-dependent gut-brain pathways for the treatment of depression with gastrointestinal symptoms: from bench to bedside.
Menglin LIU ; Genhao FAN ; Lingkai MENG ; Kuo YANG ; Huayi LIU
Journal of Zhejiang University. Science. B 2025;26(1):1-25
Patients with depression are more likely to have chronic gastrointestinal (GI) symptoms than the general population, but such symptoms are considered only somatic symptoms of depression and lack special attention. There is a chronic lack of appropriate diagnosis and effective treatment for patients with depression accompanied by GI symptoms, and studying the association between depression and GI disorders (GIDs) is extremely important for clinical management. There is growing evidence that depression is closely related to the microbiota present in the GI tract, and the microbiota-gut-brain axis (MGBA) is creating a new perspective on the association between depression and GIDs. Identifying and treating GIDs would provide a key opportunity to prevent episodes of depression and may also improve the outcome of refractory depression. Current studies on depression and the microbially related gut-brain axis (GBA) lack a focus on GI function. In this review, we combine preclinical and clinical evidence to summarize the roles of the microbially regulated GBA in emotions and GI function, and summarize potential therapeutic strategies to provide a reference for the study of the pathomechanism and treatment of depression in combination with GI symptoms.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Depression/microbiology*
;
Gastrointestinal Diseases/physiopathology*
;
Brain
;
Animals
;
Brain-Gut Axis
;
Gastrointestinal Tract/microbiology*
8.Effects of high intensity interval training on glucose metabolism, cortisol and sleep quality among college students with comorbid depressive symptoms and obesity
Chinese Journal of School Health 2025;46(12):1721-1726
Objective:
To explore the intervention effects of high intensity interval training (HIIT) on glucose metabolism, cortisol (Cor), and sleep quality among college students with comorbid depressive symptoms and obesity, so as to provide a reference for improving sleep quality among college students with comorbid depressive symptoms and obesity.
Methods:
In March 2023, 45 college students with comorbid depressive symptoms and obesity were recruited and randomly assigned to an exercise group ( n =23) and a control group ( n =22) by random number table method. The exercise group received HIIT intervention for 12 weeks, three times a week, while the control group received no intervention. Blood samples were collected from participants to measure fasting insulin (FINS), fasting blood glucose (FBG), homeostatic model assessment of insulin resistance (HOMA-IR), Cor, and Pittsburgh Sleep Quality Index (PSQI) before and after intervention. Statistical analysis was performed using t-test, repeated measures analysis of variance (ANOVA), simple effect analysis.
Results:
The repeated measures ANOVA revealed statistically significant time×group interaction effects for body composition (weight, body mass index, percentage of body fat, fat mass, waist to hip ratio), depressive symptoms, PSQI scores and its subdimensions (subjective sleep quality, sleep onset time, sleep efficiency, sleep disorders, daytime dysfunction), as well as FBG, FINS, and HOMA-IR between the exercise group and control group before and after intervention ( F =7.10-53.38, all P <0.05). Simple effect analysis showed that compared to the control group, the exercise group demonstrated significant improvements in body composition (body mass index, fat mass, waist to hip ratio), depressive symptoms, PSQI scores and its sub dimensions (subjective sleep quality, sleep onset time, sleep efficiency, sleep disorders, daytime dysfunction), FBG, FINS, HOMA-IR, and Cor (all P <0.05).
Conclusion
HIIT can improve the sleep quality of college students with comorbid depressive symptoms and obesity by enhancing glucose metabolism and regulating Cor levels.
9.Feasibility of treatment planning for 4D-CT high ventilation functional lung avoided radiotherapy in thoracic cancer
Zhiqiang LIU ; Yuan TIAN ; Kuo MEN ; Jianrong DAI
Chinese Journal of Radiological Medicine and Protection 2024;44(2):105-110
Objective:To establish a radiotherapy treatment planning process of high ventilation functional lung avoided (HVFLA) for thoracic tumors based on 4D-CT lung ventilation functional images and determine the treatment planning strategy of HVFLA radiotherapy, and so as to provide support for the clinical trials of HVFLA radiotherapy in thoracic cancer patients.Methods:A deep learning-based 4D-CT lung ventilation functional imaging model was established and integrated into the radiotherapy treatment planning process. Furthermore, ten thoracic cancer patients with 4D-CT simulation positioning were retrospectively enrolled in this study. The established model was used to obtain the 4D-CT lung ventilation functional imaging for each patient. According to the relative value of lung ventilation, the lung ventilation areas are equally segmented into high, medium and low lung ventilation and then imported them into Pinnacle 3 treatment planning system. According to the prescription dose of target and dose constraints of organ at risks (OARs), the clinical and HVFLA treatment plans were designed for each patient using volumetric modulated radiotherapy technique, and each plan should meet the clinical requirements and adding dose constraints of high ventilation functional lung for HVFLA plan. The dosimetric indexes of the target, OARs (lungs, heart and cord) and high functional lung (HFL) were used to evaluated the plan quality. The dosimetric indexes included D2, D98 and mean dose of target, V5, V10, V20, V30 and mean dose of lungs and HFL, V30, V40 and mean dose of heart, and D1 cm 3 of cord. Paired samples t-test was used for statistical analysis of the two groups of plans. Results:The target and OARs of the clinical plan and HVFLA plan meet the clinical requirements. The HVFLA plan resulted in a statistically significant reduction in the mean dose, V5, V10, V20, and V30 of the high functional lung by 1.2 Gy, 5.9%, 4.2%, 2.6%, and 2.3%, respectively ( t=-8.07, 4.02, -6.02, -7.06, -6.77, P<0.05). There was no statistical difference in the dosimetric indexes of lungs, heart and cord. Conclusions:We established the treatment planning process of HVFLA radiotherapy based on 4D-CT lung ventilation functional images. The HVFLA plan can effectively reduce the dose of HFL, while the doses of lungs, heart and cord had no significant difference compared with the clinical plan. The strategy of HVFLA radiotherapy planning is feasible to provide support for the implementation of HVFLA radiotherapy in thoracic cancer patients.
10.Prediction of anatomical images during radiotherapy of nasopharyngeal carcinoma with deep learning method
Bining YANG ; Yuxiang LIU ; Guoliang ZHANG ; Kuo MEN ; Jianrong DAI
Chinese Journal of Radiation Oncology 2024;33(4):333-338
Objective:To develop a deep learning method to predict the anatomical images of nasopharyngeal carcinoma patients during the treatment course, which could detect the anatomical variation for specific patients in advance.Methods:Imaging data including planning CT (pCT) and cone-beam CT (CBCT) for each fraction of 230 patients with T 3-T 4 staging nasopharyngeal carcinoma who treated in Cancer Hospital Chinese Academy of Medical Sciences from January 1, 2020 to December 31, 2022 were collected. The anatomical images of week k+1 were predicted using a 3D Unet model with inputs of pCT, CBCT on days 1-3, and CBCT of weeks 2- k. In this experiment, we trained four models to predict anatomical images of weeks 3-6, respectively. The nasopharynx gross tumor volume (GTV nx) and bilateral parotid glands were delineated on the predicted and real images (ground truth). The performance of models was evaluated by the consistence of the delineation between the predicted and ground truth images. Results:The proposed method could predict the anatomical images over the radiotherapy course. The contours of interest in the predicted image were consistent with those in the real image, with Dice similarity coefficient of 0.96, 0.90, 0.92, mean Hausdorff distance of 3.28, 4.18 and 3.86 mm, and mean distance to agreement of 0.37, 0.70, and 0.60 mm, for GTV nx, left parotid, and right parotid, respectively. Conclusion:This deep learning method is an accurate and feasible tool for predicting the patient's anatomical images, which contributes to predicting and preparing treatment strategy in advance and achieving individualized treatment.


Result Analysis
Print
Save
E-mail