1.Comparison of the effects of three time series models in predicting the trend of erythrocyte blood demand
Yajuan QIU ; Jianping ZHANG ; Jia LUO ; Peilin LI ; Mengzhuo LUO ; Qiongying LI ; Ge LIU ; Qing LEI ; Kai LIAO
Chinese Journal of Blood Transfusion 2025;38(2):257-262
[Objective] To analyse and predict the tendencies of using erythrocyte blood in Changsha based on the autoregressive integrated moving average (ARIMA) model, long short-term memory (LSTM) and ARIMA-LSTM combination model, so as to provide reliable basis for designing a feasible and effective blood inventory management strategy. [Methods] The data of erythrocyte usage from hospitals in Changsha between January 2012 and December 2023 were collected, and ARIMA model, LSTM model and ARIMA-LSTM combination model were established. The actual erythrocyte consumption from January to May 2024 were used to assess and verify the prediction effect of the models. The extrapolation prediction accuracy of the models were tested using two evaluation indicators: mean absolute percentage error (MAPE) and root mean square error (RMSE), and then the prediction performance of the model was compared. [Results] The RMSE of LSTM model, optimal model ARIMA(1,1,1)(1,1,1)12 and ARIMA-LSTM combination model were respectively 5 206.66, 3 096.43 and 2 745.75, and the MAPE were 18.78%,11.54% and 9.76% respectively, which indicated that the ARIMA-LSTM combination model was more accurate than the ARIMA model and LSTM model, and the prediction results was basically consistent with the actual situation. [Conclusion] The ARIMA-LSTM model can better predict the clinical erythrocyte consumption in Changsha in the short term.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.The Anti-Angiogenic Effect of Microbotox on Rosacea Is Due to the Suppressed Secretion of VEGF by Mast Cells Resulting From Internalization of the MRGPRX2 Receptor
Jing WAN ; Yue LE ; Meng-Meng GENG ; Bing-Qi DONG ; Zhi-Kai LIAO ; Lin-Xia LIU ; Tie-Chi LEI
Annals of Dermatology 2025;37(4):228-240
Background:
Intradermal microdroplet injections of botulinum toxin type-A (BoNT/A) effectively ameliorate rosacea-related angiogenesis, but the mechanism remains unclear.
Objective:
To explore the anti-angiogenesis of BoNT/A in the rosacea-like mouse model and to measure the secretion of vascular endothelial growth factor (VEGF) by mast cells.
Methods:
A rosacea-like mouse model was induced by LL37 in both Mas-related G-proteincoupled receptor B2 conditional knockout (MrgprB2 −/− ) mice and wild-type (WT) mice, then treated with BoNT/A and/or Apatinib. The abundance of endothelial cells and mast cells in mouse skin was determined using dual immunofluorescence staining. The VEGF levels in supernatants and cell lysates of laboratory of allergic disease 2 (LAD2) mast cells were assessed using reverse transcription quantitative polymerase chain reaction, western blots, and enzyme-linked immunosorbent assay. The effect of conditioned medium (CM) collected from LAD2 on human umbilical vein endothelial cells (HUVECs) was determined using tube formation assays. The number of proliferative cells was confirmed using the 5-ethynyl-2’-deoxyuridine incorporation assays.The effect of BoNT/A on the internalization of Mas-related G-protein-coupled receptor X2 (MRGPRX2) was detected using flow cytometry and immunofluorescence staining.
Results:
LL37-induced rosacea-like skin manifestations were significantly alleviated in MrgprB2 −/− mice compared to WT controls. BoNT/A mitigated the LL37-induced secretion of VEGF by LAD2. The CM from BoNT/A-treated LAD2 inhibited HUVEC proliferation and tube formation. The LAD2 cells co-treated with LL37 and BoNT/A exhibited dramatically enhanced MRGPRX2 internalization.
Conclusion
BoNT/A enhances LL37-mediated MRGPRX2 internalization in mast cells, thereby reducing VEGF secretion and neovascularization and improving facial flushing symptom in rosacea.
8.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
9.Surgical treatment of liposarcoma of spermatic cord 3 times in 1 year:a case report and literature review
Yougang LIAO ; Jun LI ; Kai HE ; Yaodong WANG
Journal of Modern Urology 2024;29(5):453-455
Objective To explore the clinical features,diagnosis and treatment of liposarcoma of spermatic cord.Methods The clinical data of 1 case with multiple recurrence of liposarcoma of spermatic cord were retrospectively analyzed,and the clinical diagnosis and treatment were discussed in combination with relevant literature.Results The patient underwent the first operation to examine the adipocytes in the right spermatic cord area.Postoperative examination revealed highly differentiated liposarcoma.Within 1 year of follow-up,radical resection of both testis and retroperitoneal tumor were performed respectively due to recurrence.Conclusion liposarcoma of spermatic cord is an extremely rare disease,and currently there is no standard treatment protocol.Radical surgical resection of localized lesions is the key,and surgical treatment is still the first choice for local recurrence.As it is unable to achieve R0 resection,the recurrence rate is very high.Since liposarcoma is not sensitive to radiotherapy and chemotherapy,more precise adjuvant therapy is highly expected.
10.Efficacy and mechanism of static progressive stretch with different parameters in treatment of stiff knee in rats
Ke CHEN ; Xin ZHANG ; Kai REN ; Hui LIU ; Yingying LIAO ; Chenghong WEN ; Xiaoping SHUI
Chinese Journal of Orthopaedic Trauma 2024;26(3):255-261
Objective:To investigate the efficacy and mechanism of static progressive stretch (SPS) with different parameters in the treatment of stiff knee in rats.Methods:Fifty-six male 8-week SD rats were randomly divided into an operation group ( n=48) and a blank group ( n=8, normal feeding rats without any treatment). The knee joints of the rats in the operation group were fixed with Kirschner wire for 4 weeks to create models of right knee flexion stiffness. The 42 rats with successful modeling were randomly divided into 6 groups ( n=7): the model group was executed and sampled after successful modeling, the spontaneous recovery group was not given any treatment after successful modeling, group T1 was given SPS treatment for 20 min once per day, group T2 was given SPS treatment for 30 min once per day, group T3 was given SPS treatment for 20 min once every 2 days, and group T4 was given SPS treatment for 30 min once every 2 days. After 16 days, the range of knee motion, number of myofibroblasts, and positive proportion of transforming growth factor- β1 (TGF- β1) in the joint capsule were detected and compared between groups. Results:The ranges of knee motion in the spontaneous recovery group and the 4 SPS treatment groups were significantly greater than those before treatment ( P<0.05), and the improvements in the range of knee motion in the 4 SPS treatment groups were significantly greater than that in the spontaneous recovery group ( P<0.05). The range of knee motion in group T2 (112.29°±1.89°) was improved the most significantly. The number of myofibroblasts was (23.72±10.75)/HP, which was significantly smaller than that in T3 group [(55.72±33.56)/HP] or in T4 group [(50.72±33.34)/HP] ( P<0.05). The positive proportions of TGF- β1 in the joint capsule in the 4 SPS treatment groups were significantly lower than that in the model group, and the positive proportion of TGF- β1 in the joint capsule in group T2 (0.51%±0.38%) was significantly lower than those in group T3 and T4 ( P<0.05). Conclusions:As SPS treatment can reduce the expression of TGF- β1 in the joint and inhibit the excessive proliferation of myofibroblasts to alleviate the pathological changes in a stiff knee, it has a significant effect on the stiff knee in rats. The SPS treatment for 30 minutes and once per day may lead to the best efficacy.

Result Analysis
Print
Save
E-mail