1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Reinfection of SARS-CoV-2 Variants in Immunocompromised Patients with Prolonged or Relapsed Viral Shedding
Ji Yeun KIM ; Euijin CHANG ; Hyeon Mu JANG ; Jun Ho CHA ; Ju Yeon SON ; Choi Young JANG ; Jeong-Sun YANG ; Joo-Yeon LEE ; Sung-Han KIM
Infection and Chemotherapy 2025;57(1):81-92
Background:
Immunocompromised patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection often have prolonged viral shedding, and some are clinically suspected of reinfection with different SARSCoV-2 variants. However, data on this issue are limited. This study investigated the SARS-CoV-2 variants in serially collected respiratory samples from immunocompromised patients with prolonged viral shedding for over 12 weeks or relapsed viral shedding after at least 2 weeks of viral clearance.
Materials and Methods:
From February 2022 to September 2023, we prospectively enrolled immunocompromised patients with coronavirus disease 2019 who had hematologic malignancies or had undergone transplantation and were admitted to a tertiary hospital. Weekly saliva or nasopharyngeal swabs were collected from enrolled patients for at least 12 weeks after diagnosis. Genomic RNA polymerase chain reaction (PCR) was performed on samples, and those testing positive underwent viral culture to isolate the live virus. Spike gene full sequencing via Sanger sequencing and real-time reverse transcription-PCR for detecting mutation genes were conducted to identify SARSCoV-2 variants.
Results:
Among 116 enrolled patients, 20 with prolonged or relapsed viral shedding were screened to identify the variants. Of these 20 patients, 7 (35%) exhibited evidence of re-infection; one of 8 patients with prolonged viral shedding and 6 of 12 with relapsed viral shedding were reinfected with SARS-CoV-2.
Conclusion
Our data suggest that approximately one-third of immunocompromised patients with persistent or relapsed viral shedding had reinfection with different variants of SARS-CoV-2.
3.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
4.Reinfection of SARS-CoV-2 Variants in Immunocompromised Patients with Prolonged or Relapsed Viral Shedding
Ji Yeun KIM ; Euijin CHANG ; Hyeon Mu JANG ; Jun Ho CHA ; Ju Yeon SON ; Choi Young JANG ; Jeong-Sun YANG ; Joo-Yeon LEE ; Sung-Han KIM
Infection and Chemotherapy 2025;57(1):81-92
Background:
Immunocompromised patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection often have prolonged viral shedding, and some are clinically suspected of reinfection with different SARSCoV-2 variants. However, data on this issue are limited. This study investigated the SARS-CoV-2 variants in serially collected respiratory samples from immunocompromised patients with prolonged viral shedding for over 12 weeks or relapsed viral shedding after at least 2 weeks of viral clearance.
Materials and Methods:
From February 2022 to September 2023, we prospectively enrolled immunocompromised patients with coronavirus disease 2019 who had hematologic malignancies or had undergone transplantation and were admitted to a tertiary hospital. Weekly saliva or nasopharyngeal swabs were collected from enrolled patients for at least 12 weeks after diagnosis. Genomic RNA polymerase chain reaction (PCR) was performed on samples, and those testing positive underwent viral culture to isolate the live virus. Spike gene full sequencing via Sanger sequencing and real-time reverse transcription-PCR for detecting mutation genes were conducted to identify SARSCoV-2 variants.
Results:
Among 116 enrolled patients, 20 with prolonged or relapsed viral shedding were screened to identify the variants. Of these 20 patients, 7 (35%) exhibited evidence of re-infection; one of 8 patients with prolonged viral shedding and 6 of 12 with relapsed viral shedding were reinfected with SARS-CoV-2.
Conclusion
Our data suggest that approximately one-third of immunocompromised patients with persistent or relapsed viral shedding had reinfection with different variants of SARS-CoV-2.
5.Reinfection of SARS-CoV-2 Variants in Immunocompromised Patients with Prolonged or Relapsed Viral Shedding
Ji Yeun KIM ; Euijin CHANG ; Hyeon Mu JANG ; Jun Ho CHA ; Ju Yeon SON ; Choi Young JANG ; Jeong-Sun YANG ; Joo-Yeon LEE ; Sung-Han KIM
Infection and Chemotherapy 2025;57(1):81-92
Background:
Immunocompromised patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection often have prolonged viral shedding, and some are clinically suspected of reinfection with different SARSCoV-2 variants. However, data on this issue are limited. This study investigated the SARS-CoV-2 variants in serially collected respiratory samples from immunocompromised patients with prolonged viral shedding for over 12 weeks or relapsed viral shedding after at least 2 weeks of viral clearance.
Materials and Methods:
From February 2022 to September 2023, we prospectively enrolled immunocompromised patients with coronavirus disease 2019 who had hematologic malignancies or had undergone transplantation and were admitted to a tertiary hospital. Weekly saliva or nasopharyngeal swabs were collected from enrolled patients for at least 12 weeks after diagnosis. Genomic RNA polymerase chain reaction (PCR) was performed on samples, and those testing positive underwent viral culture to isolate the live virus. Spike gene full sequencing via Sanger sequencing and real-time reverse transcription-PCR for detecting mutation genes were conducted to identify SARSCoV-2 variants.
Results:
Among 116 enrolled patients, 20 with prolonged or relapsed viral shedding were screened to identify the variants. Of these 20 patients, 7 (35%) exhibited evidence of re-infection; one of 8 patients with prolonged viral shedding and 6 of 12 with relapsed viral shedding were reinfected with SARS-CoV-2.
Conclusion
Our data suggest that approximately one-third of immunocompromised patients with persistent or relapsed viral shedding had reinfection with different variants of SARS-CoV-2.
6.Immunotherapy for Lung Cancer
Pei-Yang LI ; Feng-Qi LI ; Xiao-Jun HOU ; Xue-Ren LI ; Xin MU ; Hui-Min LIU ; Shou-Chun PENG
Progress in Biochemistry and Biophysics 2025;52(8):1998-2017
Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.
7.Prediction of lymph node metastasis in invasive lung adenocarcinoma based on radiomics of the primary lesion, peritumoral region, and tumor habitat: A single-center retrospective study
Hongchang WANG ; Yan GU ; Wenhao ZHANG ; Guang MU ; Wentao XUE ; Mengen WANG ; Chenghao FU ; Liang CHEN ; Mei YUAN ; Jun WANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1079-1085
Objective To predict the lymph node metastasis status of patients with invasive pulmonary adenocarcinoma by constructing machine learning models based on primary tumor radiomics, peritumoral radiomics, and habitat radiomics, and to evaluate the predictive performance and generalization ability of different imaging features. Methods A retrospective analysis was performed on the clinical data of 1 263 patients with invasive pulmonary adenocarcinoma who underwent surgery at the Department of Thoracic Surgery, Jiangsu Province Hospital, from 2016 to 2019. Habitat regions were delineated by applying K-means clustering (average cluster number of 2) to the grayscale values of CT images. The peritumoral region was defined as a uniformly expanded area of 3 mm around the primary tumor. The primary tumor region was automatically segmented using V-net combined with manual correction and annotation. Subsequently, radiomics features were extracted based on these regions, and stacked machine learning models were constructed. Model performance was evaluated on the training, testing, and internal validation sets using the area under the receiver operating characteristic curve (AUC), F1 score, recall, and precision. Results After excluding patients who did not meet the screening criteria, a total of 651 patients were included. The training set consisted of 468 patients (181 males, 287 females) with an average age of (58.39±11.23) years, ranging from 29 to 78 years, the testing set included 140 patients (56 males, 84 females) with an average age of (58.81±10.70) years, ranging from 34 to 82 years, and the internal validation set comprised 43 patients (14 males, 29 females) with an average age of (60.16±10.68) years, ranging from 29 to 78 years. Although the habitat radiomics model did not show the optimal performance in the training set, it exhibited superior performance in the internal validation set, with an AUC of 0.952 [95%CI (0.87, 1.00)], an F1 score of 84.62%, and a precision-recall AUC of 0.892, outperforming the models based on the primary tumor and peritumoral regions. Conclusion The model constructed based on habitat radiomics demonstrated superior performance in the internal validation set, suggesting its potential for better generalization ability and clinical application in predicting lymph node metastasis status in pulmonary adenocarcinoma.
8. Expression, purification, and functional verification of recombinant human glycoprotein hormone beta 5/alpha 2 fusion protein in CHO-S cells
Ai-Jun QIAN ; Geng-Miao XIAO ; Zhuang LI ; Yun-Ping MU ; Zi-Jian ZHAO ; Fang-Hong LI ; Zhi-Cheng LIANG
Chinese Pharmacological Bulletin 2024;40(2):390-396
Aim To express and purify recombinant hCGH-CTP fusion protein in high-density suspension culture of Chinese hamster ovary cells (CHO-S), and to verify the lipid accumulation effect of rhCGH-CTP on 3T3-L1 mature adipocytes. Methods The recombinant protein expression vector (pcDNA3. 1-rhCGH-CTP) was constructed, achieved by fusing the human glycoprotein hormone beta 5/alpha 2 cDNA with CTP Linker. The expression plasmid was transiently transfected into the suspended CHO-S to express rhCGH-CTP protein and then purified, and the protein biological activity was verified. Intervention with 3T3-L1 mature adipocyte cells for 24 h was performed to detect the changes of intracellular triglyceride (TG) level. Results Western blot results showed that rhCGH-CTP protein was successfully expressed in CHO-S cells, and the yield was up to 715. 4 mg • L~ . The secreted protein was purified by AKTA pure system with higher purity that was up to 90% as identified by SDS-PAGE. In addition, the intracellular cAMP content of mature adipocytes with high expression of TSHR gene significantly increased after intervention with different concentrations of rhCGH-CTP protein by ELISA kit, indicating that rhCGH-CTP protein had biological activity. Oil red 0 staining showed that compared with the control group, the lipid content of mature adipocytes in the intervention groups with different concentrations of rhCGH-CTP protein significantly decreased (P < 0. 05) . Conclusions The rhCGH-CTP protein has been successfully expressed and purified with biological activity, and effectively reduce TG. This research provides an important theoretical basis for further revealing the physiological role of CGH protein and its potential application in clinical practice.
9.Correlation between Helicobacter pylori infection and gastrointestinal tumor in the physical examination population in Xi'an City
Lin HE ; Yudong MU ; Ying SUN ; Zhimin YUAN ; Jun YUAN
Journal of Public Health and Preventive Medicine 2024;35(1):104-108
Objective To analyze the spatial distribution of Helicobacter Pylori (Hp) infection and its correlation with gastrointestinal tumors in the physical examination population of Xi'an city, and to provide reference for the prevention of gastrointestinal tumors in this area. Methods A total of 23 200 subjects who underwent physical examination in 25 public hospitals in Xi'an from January 2019 to January 2023 were selected as the research objects. The basic Information of the patients was derived through the Hospital Information System (HIS), and all subjects underwent 13C-breath test and gastroenterological endoscope. ArcGIS 10.6 software was used to draw a statistical map of Hp infection in Xi 'an for spatial autocorrelation analysis. Hp infection in patients with different gastrointestinal tumors was analyzed. Results In this study population, there were 10 858 cases of Hp infection , with an infection rate of 46.80% ; among them , 5 491 cases were male, with an infection rate of 46.60% , and 5,367 cases were female, with an infection rate of 47.01% , and there was no significant difference in the infection rate between genders (P>0.05). The prevalence of HP infection was higher in the 30-year-old and 20-year-old groups, 55.62% and 42.71%, respectively, and the infection rate showed a first increase and then a decreasing trend with age (χ2trend = 6201.21, 6945.22 , P<0.001 ). The spatial distribution of Hp infection rate in the physical examination population of each administrative region county in Xi'an was globally spatially positively correlated, with spatial clustering (Moran's I=0.14, P=0.02). Local spatial autocorrelation showed that the five districts and counties presented high-high clustering. A total of 418 cases of gastrointestinal tumors were detected, with a detection rate of 1.80% , including 156 cases of gastric cancer , 85.90% of Hp infection rate, 106 cases of gastric mucosa-associated lymphoid tissue lymphoma, 83.02% of Hp infection rate, 98 cases of colon cancer, 80.61% of Hp infection rate, 58 cases of rectal cancer, 84.48% of Hp infection rate, and the differences were statistically significant (χ2=13.49, 16.16, 17.27, 24.66, P<0.05 for all). Conclusion The distribution of Hp infection in the physical examination population of Xi'an city has the characteristics of spatial aggregation and is related to gastrointestinal tumor diseases. It is suggested to carry out Hp infection education for the population in key areas to prevent the occurrence of gastrointestinal tumor diseases.
10.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111


Result Analysis
Print
Save
E-mail