1.Research progress on ferroptosis in the treatment of bladder cancer
Jingping QIU ; Lugang ZHU ; Yuanwei CHEN ; Minghong ZHOU ; Yuwan ZHAO ; Jianjun LIU
Journal of Modern Urology 2024;29(9):830-835
Ferroptosis is a new programmed cell death dependent on iron ions.Ferroptosis can be induced by endogenous or exogenous pathways,and cells exhibit specific cell morphological signs and are regulated by a variety of molecular mechanisms.In recent years,more and more studies have shown that ferroptosis plays an important role in the treatment of cancer.This article summarizes the mechanism of ferroptosis in bladder cancer and the regulation of cancer cells,as well as the role of ferroptosis-related factors,non-coding RNA regulation,N6-methyladenosine(m6A),amino acid metabolism and autophagy dependent ferroptosis in the growth and proliferation of bladder cancer,with a view to provide new strategies for the treatment of bladder cancer.
2.Expert consensus on difficulty assessment of endodontic therapy
Huang DINGMING ; Wang XIAOYAN ; Liang JINGPING ; Ling JUNQI ; Bian ZHUAN ; Yu QING ; Hou BENXIANG ; Chen XINMEI ; Li JIYAO ; Ye LING ; Cheng LEI ; Xu XIN ; Hu TAO ; Wu HONGKUN ; Guo BIN ; Su QIN ; Chen ZHI ; Qiu LIHONG ; Chen WENXIA ; Wei XI ; Huang ZHENGWEI ; Yu JINHUA ; Lin ZHENGMEI ; Zhang QI ; Yang DEQIN ; Zhao JIN ; Pan SHUANG ; Yang JIAN ; Wu JIAYUAN ; Pan YIHUAI ; Xie XIAOLI ; Deng SHULI ; Huang XIAOJING ; Zhang LAN ; Yue LIN ; Zhou XUEDONG
International Journal of Oral Science 2024;16(1):15-25
Endodontic diseases are a kind of chronic infectious oral disease.Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha.However,it is very essential for endodontic treatment to debride the root canal system and prevent the root canal system from bacterial reinfection after root canal therapy(RCT).Recent research,encompassing bacterial etiology and advanced imaging techniques,contributes to our understanding of the root canal system's anatomy intricacies and the technique sensitivity of RCT.Success in RCT hinges on factors like patients,infection severity,root canal anatomy,and treatment techniques.Therefore,improving disease management is a key issue to combat endodontic diseases and cure periapical lesions.The clinical difficulty assessment system of RCT is established based on patient conditions,tooth conditions,root canal configuration,and root canal needing retreatment,and emphasizes pre-treatment risk assessment for optimal outcomes.The findings suggest that the presence of risk factors may correlate with the challenge of achieving the high standard required for RCT.These insights contribute not only to improve education but also aid practitioners in treatment planning and referral decision-making within the field of endodontics.
3.Expert consensus on irrigation and intracanal medication in root canal therapy
Zou XIAOYING ; Zheng XIN ; Liang YUHONG ; Zhang CHENGFEI ; Fan BING ; Liang JINGPING ; Ling JUNQI ; Bian ZHUAN ; Yu QING ; Hou BENXIANG ; Chen ZHI ; Wei XI ; Qiu LIHONG ; Chen WENXIA ; He WENXI ; Xu XIN ; Meng LIUYAN ; Zhang CHEN ; Chen LIMING ; Deng SHULI ; Lei YAYAN ; Xie XIAOLI ; Wang XIAOYAN ; Yu JINHUA ; Zhao JIN ; Shen SONG ; Zhou XUEDONG ; Yue LIN
International Journal of Oral Science 2024;16(1):26-35
Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment.However,irrigant selection or irrigation procedures are far from clear.The vapor lock effect in the apical region has yet to be solved,impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes.Additionally,ambiguous clinical indications for root canal medication and non-standardized dressing protocols must be clarified.Inappropriate intracanal medication may present side effects and jeopardize the therapeutic outcomes.Indeed,clinicians have been aware of these concerns for years.Based on the current evidence of studies,this article reviews the properties of various irrigants and intracanal medicaments and elucidates their effectiveness and interactions.The evolution of different kinetic irrigation methods,their effects,limitations,the paradigm shift,current indications,and effective operational procedures regarding intracanal medication are also discussed.This expert consensus aims to establish the clinical operation guidelines for root canal irrigation and a position statement on intracanal medication,thus facilitating a better understanding of infection control,standardizing clinical practice,and ultimately improving the success of endodontic therapy.
4.Experts consensus on the procedure of dental operative microscope in endodontics and operative dentistry.
Bin LIU ; Xuedong ZHOU ; Lin YUE ; Benxiang HOU ; Qing YU ; Bing FAN ; Xi WEI ; Lihong QIU ; Zhengwei HUANG ; Wenwei XIA ; Zhe SUN ; Hanguo WANG ; Liuyan MENG ; Bin PENG ; Chen ZHANG ; Shuli DENG ; Zhaojie LU ; Deqin YANG ; Tiezhou HOU ; Qianzhou JIANG ; Xiaoli XIE ; Xuejun LIU ; Jiyao LI ; Zuhua WANG ; Haipeng LYU ; Ming XUE ; Jiuyu GE ; Yi DU ; Jin ZHAO ; Jingping LIANG
International Journal of Oral Science 2023;15(1):43-43
The dental operative microscope has been widely employed in the field of dentistry, particularly in endodontics and operative dentistry, resulting in significant advancements in the effectiveness of root canal therapy, endodontic surgery, and dental restoration. However, the improper use of this microscope continues to be common in clinical settings, primarily due to operators' insufficient understanding and proficiency in both the features and established operating procedures of this equipment. In October 2019, Professor Jingping Liang, Vice Chairman of the Society of Cariology and Endodontology, Chinese Stomatological Association, organized a consensus meeting with Chinese experts in endodontics and operative dentistry. The objective of this meeting was to establish a standard operation procedure for the dental operative microscope. Subsequently, a consensus was reached and officially issued. Over the span of about four years, the content of this consensus has been further developed and improved through practical experience.
Humans
;
Dentistry, Operative
;
Consensus
;
Endodontics
;
Root Canal Therapy
;
Dental Care
5.Expert consensus on digital guided therapy for endodontic diseases.
Xi WEI ; Yu DU ; Xuedong ZHOU ; Lin YUE ; Qing YU ; Benxiang HOU ; Zhi CHEN ; Jingping LIANG ; Wenxia CHEN ; Lihong QIU ; Xiangya HUANG ; Liuyan MENG ; Dingming HUANG ; Xiaoyan WANG ; Yu TIAN ; Zisheng TANG ; Qi ZHANG ; Leiying MIAO ; Jin ZHAO ; Deqin YANG ; Jian YANG ; Junqi LING
International Journal of Oral Science 2023;15(1):54-54
Digital guided therapy (DGT) has been advocated as a contemporary computer-aided technique for treating endodontic diseases in recent decades. The concept of DGT for endodontic diseases is categorized into static guided endodontics (SGE), necessitating a meticulously designed template, and dynamic guided endodontics (DGE), which utilizes an optical triangulation tracking system. Based on cone-beam computed tomography (CBCT) images superimposed with or without oral scan (OS) data, a virtual template is crafted through software and subsequently translated into a 3-dimensional (3D) printing for SGE, while the system guides the drilling path with a real-time navigation in DGE. DGT was reported to resolve a series of challenging endodontic cases, including teeth with pulp obliteration, teeth with anatomical abnormalities, teeth requiring retreatment, posterior teeth needing endodontic microsurgery, and tooth autotransplantation. Case reports and basic researches all demonstrate that DGT stand as a precise, time-saving, and minimally invasive approach in contrast to conventional freehand method. This expert consensus mainly introduces the case selection, general workflow, evaluation, and impact factor of DGT, which could provide an alternative working strategy in endodontic treatment.
Humans
;
Consensus
;
Endodontics/methods*
;
Tooth
;
Printing, Three-Dimensional
;
Dental Care
;
Cone-Beam Computed Tomography
;
Root Canal Therapy
6.Effects of Polygonatum Kingianum Coll.et Hemsl on Oxidative Stress and Expression of Nrf2/HO-1 Signaling Pathyway in Diabetes Rats with Skin Lesions
Xiangduo ZUO ; Yajing XU ; Bin QIU ; Jingping LI ; Jie YU
World Science and Technology-Modernization of Traditional Chinese Medicine 2023;25(9):2959-2966
Objective To investigate the effects of Polygonatum kingianum on wound healing and nuclear factor-erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)signaling pathway in diabetic skin injury rats.Methods Diabetic rat models were established and 48 rats were randomly divided into model group,sitagliptin group(10 mg·kg-1),Polygonatum kingianum water extract low dose group(2 g·kg-1),Polygonatum kingianum water extract high dose group(8 g·kg-1)and Polygonatum Kingianum alcohol extract low and high dose group(2 g·kg-1 and 8 g·kg-1).8 in each group;Another control group was set up.After 4 weeks of intragastric administration,all rats established back skin wounds,and continued to be administered for 14 days after operation.At the end of the experiment,the rats were killed,and blood glucose,glycosylated hemoglobin(GHb),plasma levels of H2O2,MDA,SOD,GSH and wound margin skin tissue T-AOC,SOD,MDA levels were measured.The relative expression of Nrf2 and HO-1 mRNA in wound margin skin tissue was measured by fluorescence quantitative method.Results Compared with the model group,the levels of SOD and GSH in plasma and the relative expressions of Nrf2 and HO-1 mRNA in wound margin skin tissue in the low and high dose groups of ethanol extract of Polygonatum kingianum,and the low and high dose groups of water extract of Polygonatum kingianum were increased(P<0.01,P<0.001).The levels of glycosylated hemoglobin(GHb)in plasma and MDA in wound margin tissue were decreased(P<0.05,P<0.01,P<0.001).The level of T-AOC in the high dose group was increased(P<0.01).The SOD level of skin tissue in the low dose group of Polygonatum kingianum water extract was increased(P<0.01),and the level of H2O2 in the low dose group was decreased(P<0.01).Conclusion Polygonatum canaliculatum can up-regulate Nrf2/HO-1 signaling pathway,regulate excessive oxidative stress,and promote wound healing.
7. The inhibition effects of apatinib on cell proliferation, migration and apoptosis in esophageal carcinoma via Ras/Raf/MEK/ERK and JAK2/STAT3 pathways
Yue FENG ; Mengyun ZHOU ; Fei SUN ; Ze KONG ; Jian WANG ; Zhiqiang SUN ; Lijun HU ; Jianlin WANG ; Qiu HUA ; Jingping YU
Chinese Journal of Oncology 2019;41(4):263-275
Objective:
To investigate the in vitro and in vivo effects of apatinib in esophageal squamous cell carcinoma and the underlying mechanisms.
Methods:
The esophageal cancer cells, KYSE-150 and ECA-109, were divided into control group and apatinib treatment group at the concentrations of 2.5, 5, 10, 20 and 40 μmol/L respectively. All of experiments were performed in triplicate. MTT and colony formation assays were used to measure cell proliferation. Transwell assay was used to determine the migration capacity. The effect of apatinib on cell cycle and apoptosis was analyzed by flow cytometry. The expression of VEGF and VEGFR-2 was measured by real-time quantitative PCR (qRT-PCR). The concentration of VEGF in the cell supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). The expression levels of MEK, ERK, p-MEK, p-ERK, JAK2, STAT3 and p-STAT3 after VEGF stimulation were detected by Western blot. Furthermore, the nude mice xenograft model was established. The tumor-bearing mice were randomly divided into control group, apatinib low dose treatment group (250 mg) and apatinib high dose treatment group (500 mg), respectively. Tumor inhibition rates of different groups were calculated. And then the expressions of VEGF and VEGFR2 were detected in xenograft tissues by immunohistochemical staining.
Results:
In the presence of 20 μmol/L and 40 μmol/L of apatinib for 24 hours, the migration cell numbers of KYSE-150 and ECA-109 were 428.67±4.16 and 286.67±1.53 as well as 1 123.67±70.00 and 477.33±26.84, respectively, that were significantly lower than control group (
8.The inhibition effects of apatinib on cell proliferation, migration and apoptosis in esophageal carcinoma via Ras/Raf/MEK/ERK and JAK2/STAT3 pathways
Yue FENG ; Mengyun ZHOU ; Fei SUN ; Ze KONG ; Jian WANG ; Zhiqiang SUN ; Lijun HU ; Jianlin WANG ; Qiu HUA ; Jingping YU
Chinese Journal of Oncology 2019;41(4):263-275
Objective To investigate the in vitro and in vivo effects of apatinib in esophageal squamous cell carcinoma and the underlying mechanisms. Methods The esophageal cancer cells, KYSE?150 and ECA?109, were divided into control group and apatinib treatment group at the concentrations of 2.5, 5, 10, 20 and 40 μmol/L respectively. All of experiments were performed in triplicate. MTT and colony formation assays were used to measure cell proliferation. Transwell assay was used to determine the migration capacity. The effect of apatinib on cell cycle and apoptosis was analyzed by flow cytometry. The expression of VEGF and VEGFR?2 was measured by real?time quantitative PCR (qRT?PCR). The concentration of VEGF in the cell supernatant was assessed by enzyme?linked immunosorbent assay (ELISA). The expression levels of MEK, ERK, p?MEK, p?ERK, JAK2, STAT3 and p?STAT3 after VEGF stimulation were detected by Western blot. Furthermore, the nude mice xenograft model was established. The tumor?bearing mice were randomly divided into control group, apatinib low dose treatment group (250 mg) and apatinib high dose treatment group (500 mg), respectively.Tumor inhibition rates of different groups were calculated.And then the expressions of VEGF and VEGFR2 were detected in xenograft tissues by immunohistochemical staining. Results In the presence of 20 μmol/L and 40 μmol/L of apatinib for 24 hours, the migration cell numbers of KYSE?150 and ECA?109 were 428.67±4.16 and 286.67±1.53 as well as 1 123.67±70.00 and 477.33± 26.84, respectively, that were significantly lower than control group ( P<0.05 for all). In addition, after treatment with 10 μmol/L, 20 μmol/L and 40 μmol/L of apatinib for 7 days on KYSE?150 and ECA?109, the colony formation rates were ( 65.12± 25.48)%, ( 58.19± 24.73)% and (29.10± 22.40)% as well as (70.61±15.14)%, (61.12±17.21)% and (43.09±11.13)%, respectively. The colony formation rates of 20 μmol/L and 40 μmol/L of apatinib treatment groups were significantly lower than control group (100.00±0.00, P<0.05). The cell cycle ratio of G2/M phase and apoptosis rate of control group and 20 μmol/L apatinib group in KYSE?150 cells were (12.14±2.13)% and (3.49±0.74)% as well as (26.27±3.30)% and (15.65± 1.54)%, respectively. The corresponding ratios in ECA?109 cells were (3.44±0.57)% and (6.31±1.43)%as well as (22.64±2.36)% and (49.26± 1.62)%, respectively. The results show that apatinib suppressed cell cycle progression at G2/M phase and induced cell apoptosis in both KYSE?150 and ECA?109 cells (P<0.05 for all). In the presence of 20 μmol/L and 40 μmol/L of apatinib in KYSE?150 cells, the relative levels of VEGF mRNA were (42.57± 10.43)% and ( 25.69± 1.24)%, and those of VEGF?2 mRNA were (36.09±10.82)% and (13.99±6.54)%, which were all significantly decreased compared to control group (100.00±0.00, P<0.05 for all). For ECA?109 cells, the relative expression of VEGF and VEGFR2 showed similar tendency (P<0.05 for all). Moreover, after treatment with 20 μmol/L and 40 μmol/L of apatinib in KYSE?150 cells, the VEGF concentrations were ( 766.48± 114.27) pg/ml and ( 497.40± 102.18) pg/ml, which were significantly decreased compared to control group [(967.41± 57.75) pg/ml, P<0.05)]. The results in ECA?109 were consistent (P<0.05). Furthermore, after treatment with 40 μmol/L of apatinib in KYSE?150 and ECA?109, the relative expression of p?MEK and p?ERK were 0.49±0.05 and 0.28±0.03 as well as 0.63±0.03 and 1.22±0.15, which were significantly lower than control group (1.23±0.19 and 0.66± 0.07 as well as 1.03±0.20 and 1.76±0.20; P<0.05). The relative expression of STAT3, p?STAT3 in control group and experimental group were 0.96 ± 0.15 and 0.85 ± 0.16 as well as 0.62 ± 0.09 and 0.36 ± 0.13, respectively. The results showed that the protein levels of STAT3 and p?STAT3 were significantly lower than the control group (P<0.05 for all). The inhibition rates of apatinib in xenograft nude mice were 29.25% and 19.96% for 250 mg and 500 mg treatment groups. The concentration of VEGF were (25.11±4.12) pg/ml, (16.40 ± 2.81) pg/ml and ( 15.04 ± 4.88) pg/ml for control, 250 mg and 500 mg treatment groups, respectively. Conclusions Apatinib can inhibit cell proliferation, induce apoptosis and suppress migration of esophageal cancer cells in vitro and in vivo. This effect was mainly mediated via the alterations of Ras/Raf/MEK/ERK pathway and JAK2/STAT3 pathway.
9.The inhibition effects of apatinib on cell proliferation, migration and apoptosis in esophageal carcinoma via Ras/Raf/MEK/ERK and JAK2/STAT3 pathways
Yue FENG ; Mengyun ZHOU ; Fei SUN ; Ze KONG ; Jian WANG ; Zhiqiang SUN ; Lijun HU ; Jianlin WANG ; Qiu HUA ; Jingping YU
Chinese Journal of Oncology 2019;41(4):263-275
Objective To investigate the in vitro and in vivo effects of apatinib in esophageal squamous cell carcinoma and the underlying mechanisms. Methods The esophageal cancer cells, KYSE?150 and ECA?109, were divided into control group and apatinib treatment group at the concentrations of 2.5, 5, 10, 20 and 40 μmol/L respectively. All of experiments were performed in triplicate. MTT and colony formation assays were used to measure cell proliferation. Transwell assay was used to determine the migration capacity. The effect of apatinib on cell cycle and apoptosis was analyzed by flow cytometry. The expression of VEGF and VEGFR?2 was measured by real?time quantitative PCR (qRT?PCR). The concentration of VEGF in the cell supernatant was assessed by enzyme?linked immunosorbent assay (ELISA). The expression levels of MEK, ERK, p?MEK, p?ERK, JAK2, STAT3 and p?STAT3 after VEGF stimulation were detected by Western blot. Furthermore, the nude mice xenograft model was established. The tumor?bearing mice were randomly divided into control group, apatinib low dose treatment group (250 mg) and apatinib high dose treatment group (500 mg), respectively.Tumor inhibition rates of different groups were calculated.And then the expressions of VEGF and VEGFR2 were detected in xenograft tissues by immunohistochemical staining. Results In the presence of 20 μmol/L and 40 μmol/L of apatinib for 24 hours, the migration cell numbers of KYSE?150 and ECA?109 were 428.67±4.16 and 286.67±1.53 as well as 1 123.67±70.00 and 477.33± 26.84, respectively, that were significantly lower than control group ( P<0.05 for all). In addition, after treatment with 10 μmol/L, 20 μmol/L and 40 μmol/L of apatinib for 7 days on KYSE?150 and ECA?109, the colony formation rates were ( 65.12± 25.48)%, ( 58.19± 24.73)% and (29.10± 22.40)% as well as (70.61±15.14)%, (61.12±17.21)% and (43.09±11.13)%, respectively. The colony formation rates of 20 μmol/L and 40 μmol/L of apatinib treatment groups were significantly lower than control group (100.00±0.00, P<0.05). The cell cycle ratio of G2/M phase and apoptosis rate of control group and 20 μmol/L apatinib group in KYSE?150 cells were (12.14±2.13)% and (3.49±0.74)% as well as (26.27±3.30)% and (15.65± 1.54)%, respectively. The corresponding ratios in ECA?109 cells were (3.44±0.57)% and (6.31±1.43)%as well as (22.64±2.36)% and (49.26± 1.62)%, respectively. The results show that apatinib suppressed cell cycle progression at G2/M phase and induced cell apoptosis in both KYSE?150 and ECA?109 cells (P<0.05 for all). In the presence of 20 μmol/L and 40 μmol/L of apatinib in KYSE?150 cells, the relative levels of VEGF mRNA were (42.57± 10.43)% and ( 25.69± 1.24)%, and those of VEGF?2 mRNA were (36.09±10.82)% and (13.99±6.54)%, which were all significantly decreased compared to control group (100.00±0.00, P<0.05 for all). For ECA?109 cells, the relative expression of VEGF and VEGFR2 showed similar tendency (P<0.05 for all). Moreover, after treatment with 20 μmol/L and 40 μmol/L of apatinib in KYSE?150 cells, the VEGF concentrations were ( 766.48± 114.27) pg/ml and ( 497.40± 102.18) pg/ml, which were significantly decreased compared to control group [(967.41± 57.75) pg/ml, P<0.05)]. The results in ECA?109 were consistent (P<0.05). Furthermore, after treatment with 40 μmol/L of apatinib in KYSE?150 and ECA?109, the relative expression of p?MEK and p?ERK were 0.49±0.05 and 0.28±0.03 as well as 0.63±0.03 and 1.22±0.15, which were significantly lower than control group (1.23±0.19 and 0.66± 0.07 as well as 1.03±0.20 and 1.76±0.20; P<0.05). The relative expression of STAT3, p?STAT3 in control group and experimental group were 0.96 ± 0.15 and 0.85 ± 0.16 as well as 0.62 ± 0.09 and 0.36 ± 0.13, respectively. The results showed that the protein levels of STAT3 and p?STAT3 were significantly lower than the control group (P<0.05 for all). The inhibition rates of apatinib in xenograft nude mice were 29.25% and 19.96% for 250 mg and 500 mg treatment groups. The concentration of VEGF were (25.11±4.12) pg/ml, (16.40 ± 2.81) pg/ml and ( 15.04 ± 4.88) pg/ml for control, 250 mg and 500 mg treatment groups, respectively. Conclusions Apatinib can inhibit cell proliferation, induce apoptosis and suppress migration of esophageal cancer cells in vitro and in vivo. This effect was mainly mediated via the alterations of Ras/Raf/MEK/ERK pathway and JAK2/STAT3 pathway.
10.Preliminary Establishment of a Scoring System Based on Medical History,Vital Signs,and Routine Blood Test for Prediction of the Prognosis of Esophageal Cancer
Jingping QIU ; Jun DANG ; Feng CAI ; Guang LI
Journal of China Medical University 2018;47(1):36-41
Objective To screen predictors for the prognosis of patients with inoperable locally advanced esophageal squamous carcinoma (LAESC) who are undergoing concurrent radiochemotherapy and establish a preliminary scoring system. Methods The data of 75 patients with inoperable LAESC who were undergoing intensity-modulated radiation therapy and concurrent chemotherapy were collected and analyzed to determine whether the prognosis was associated with medical history,vital signs,and the results of routine blood test and liver and kidney functions test before and at the end of radiochemotherapy. The prediction efficacy of the model was assessed using the receiver-operating characteristic curve. The degree of fitting was tested using the Hosmer-Lemeshow goodness-of-fit test. Results Seventy-five patients with LAESC were included. The univariate analysis indicated that the prognosis of the patients with LAESC who were undergoing concurrent radiochemotherapy was associated with weight loss of more than 5%,poor dietary habit,and significant decrease in white blood cell count (P = 0.047,0.074,and 0.074). The multivariate Cox model was conducted,and a scoring system for prediction of prognosis was established. The scores were 1.5 for weight loss of more than 5%,1.0 for poor dietary habit,and 1.0 for a significant decrease in white blood cell count (more than 2.0×109/L). A total score of more than 2.25 indicated a high mortality risk,with a sensitivity of 0.559 and a specificity of 0.805. Conclusion The simple and practical scoring system for prediction of prognosis of patients with LAESC in this study could generally predict the mortality risk of patients with inoperable LAESC who are undergoing concurrent radiochemotherapy.

Result Analysis
Print
Save
E-mail