1.Exploring Multi-target Effect of Erzhiwan on Improving Myocardial Injury in Ovariectomized Mice Based on Non-targeted Metabolomics
Ying YANG ; Jing HU ; Pei LI ; Ruyuan ZHU ; Zhiguo ZHANG ; Haixia LIU ; Yanjing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):74-84
ObjectiveTo explore the target of Erzhiwan in reducing myocardial injury in ovariectomized mice through non-targeted myocardial metabolomics combined with experimental verification. MethodsOvariectomized mouse model was selected, 40 female C57BL/6 mice were randomly divided into sham operation group, model group, estrogen group(estradiol valerate, 1.3×10-4 g·kg-1), Erzhiwan low and high dose groups(3.12, 9.36 g·kg-1), with 8 mice in each group. Each administration group was given the corresponding dose of Erzhiwan by gavage, and the sham operation group and model group were given equal volume of distilled water by gavage for 12 weeks. Echocardiography was used to detect cardiac function, hematoxylin-eosin(HE) staining was used to observe myocardial morphological changes, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of estrogen, N-terminal pro-brain natriuretic peptide(NT-proBNP), hypersensitive troponin T(hs-TnT), total cholesterol(TC), triglyceride(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), interleukin(IL)-1β, IL-18 and tumor necrosis factor-α(TNF-α). The non-targeted metabolomics of mouse myocardium were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites and corresponding metabolic pathways were obtained. The mRNA expression levels of phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in mouse myocardial tissues were detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression levels of PI3K, Akt, phosphorylated(p)-Akt were detected by Western blot. ResultsCompared with the sham operation group, the model group showed abnormal cardiac function, increased myocardial fiber space, cardiomyocyte atrophy, sarcoplasmic aggregation, and occasional dissolution or rupture of muscle fiber, the level of estrogen in the serum was decreased, the levels of NT-proBNP, hs-TnT, IL-1β, IL-18, TNF-α, TG, TC and LDL-C were increased, and the level of HDL-C was decreased(P<0.01). Compared with the model group, Erzhiwan could increase the level of estrogen, improve the abnormal cardiac function, reduce the pathological injury of myocardial tissue, decrease the levels of myocardial injury markers(NT-proBNP, hs-TnT) and inflammatory factors(IL-1β, IL-18, TNF-α), decrease the levels of TG, TC, LDL-C, and increased the level of HDL-C(P<0.01). The results of non-targeted myocardial metabolomics showed that 31 of the 162 differential metabolites between the model group and sham operation group were significantly adjusted after administration of Erzhiwan, which were mainly glycerol phospholipid metabolites. Pathway enrichment results showed that Erzhiwan mainly affected glycerophospholipid metabolic pathway, PI3K-Akt pathway, cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG) pathway and other metabolic pathways. Compared with the sham operation group, the levels of phosphatidylcholine(PC, 11 types) and phosphatidylethanolamine(PE, 5 types) in mouse myocardial tissue of the model group were increased(P<0.05, P<0.01), and the mRNA and protein expressions of PI3K and p-Akt were decreased(P<0.05, P<0.01). Compared with the model group, the levels of PC(11 types) and PE(5 types) were decreased(P<0.05, P<0.01) in myocardial tissue of Erzhiwan group, the mRNA and protein expressions of PI3K and p-Akt were elevated(P<0.01). ConclusionErzhiwan can alleviate the pathological injury of myocardium in ovariectomized mice, improve the abnormal cardiac function, improve lipid metabolism disorder, and reduce the levels of myocardial injury markers and inflammatory factors, which involves a number of signaling and metabolic pathways in the heart, among which glycerophospholipid metabolism pathway and PI3K/Akt pathway may have key roles.
2.Clinical Efficacy of Modified Huangqi Chifengtang in Treatment of IgA Nephropathy Patients and Exploration of Dose-effect Relationship of Astragali Radix
Xiujie SHI ; Meiying CHANG ; Yue SHI ; Ziyan ZHANG ; Yifan ZHANG ; Qi ZHANG ; Hangyu DUAN ; Jing LIU ; Mingming ZHAO ; Yuan SI ; Yu ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):9-16
ObjectiveTo explore the dose-effect relationship and safety of high, medium, and low doses of raw Astragali Radix in the modified Huangqi Chifengtang (MHCD) for treating proteinuria in immunoglobulin A (IgA) nephropathy, and to provide scientific evidence for the clinical use of high-dose Astragali Radix in the treatment of proteinuria in IgA nephropathy. MethodsA total of 120 patients with IgA nephropathy, diagnosed with Qi deficiency and blood stasis combined with wind pathogen and heat toxicity, were randomly divided into a control group and three treatment groups. The control group received telmisartan combined with a Chinese medicine placebo, while the treatment groups were given telmisartan combined with MHCD containing different doses of raw Astragali Radix (60, 30, 15 g). Each group contained 30 patients, and the treatment period was 12 weeks. Changes in 24-hour urinary protein (24 hUTP), traditional Chinese medicine (TCM) syndrome scores, effective rate, and renal function were observed before and after treatment. Safety was assessed by monitoring liver function and blood routine. ResultsAfter 12 weeks of treatment, 24 hUTP significantly decreased in the high, medium, and low-dose groups, as well as the control group (P<0.05, P<0.01). The TCM syndrome scores in the high, medium, and low-dose groups also significantly decreased (P<0.01). Comparisons between groups showed that the 24 hUTP in the high-dose group was significantly lower than in the medium, low-dose, and control groups (P<0.05, P<0.01), and the 24 hUTP in the medium-dose group was significantly lower than in the control group (P<0.05). The TCM syndrome scores in the high and medium-dose groups were significantly lower than in the low-dose and control groups (P<0.05, P<0.01). The total effective rates for proteinuria in the high, medium, low-dose, and control groups were 92.59% (25/27), 85.19% (23/27), 60.71% (17/28), and 57.14% (16/28), respectively. The effective rates in the high and medium-dose groups were significantly higher than in the low-dose and control groups (χ2=13.185, P<0.05, P<0.01). The effective rates for TCM syndrome scores in the high, medium, low-dose, and control groups were 88.89% (24/27), 81.48% (22/27), 71.43% (20/28), and 46.43% (13/28), respectively. The efficacy of TCM syndrome scores in the high and medium-dose groups was significantly higher than in the control group (χ2=14.053, P<0.01). Compared with pre-treatment values, there was no statistically significant difference in eGFR and serum creatinine in the high and medium-dose groups. However, eGFR significantly decreased in the low-dose and control groups after treatment (P<0.05), and serum creatinine levels increased significantly in the control group (P<0.05). No statistically significant differences were observed in urea nitrogen, uric acid, albumin, total cholesterol, triglycerides, liver function, and blood routine before and after treatment in any group. ConclusionThere is a dose-effect relationship in the treatment of IgA nephropathy with high, medium, and low doses of raw Astragali Radix in MHCD. The high-dose group exhibited the best therapeutic effect and good safety profile.
3.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
4.Traditional Chinese Medicine Treats Sepsis by Regulating PI3K/Akt Pathway: A Review
Zhu LIU ; Jiawei WANG ; Jing YAN ; Jinchan PENG ; Mingyao XU ; Liqun LI ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):314-322
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms such as bacteria. In addition to the manifestations of systemic inflammatory response syndrome and primary infection lesions, critical cases often have manifestations of organ hypoperfusion. The morbidity and mortality of sepsis have remained high in recent years, which seriously affect the quality of life of the patients. The pathogenesis of sepsis is complicated, in which uncontrollable inflammation is a key mechanism. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway plays a key role in mediating inflammation in sepsis. The available therapies of sepsis mainly include resuscitation, anti-infection, vasoactive drugs, intensive insulin therapy, and organ support, which show limited effects of reducing the mortality. Therefore, finding new therapeutic drugs is a key problem to be solved in the clinical treatment of sepsis. In recent years, studies have shown that traditional Chinese medicine (TCM) can regulate the PI3K/Akt pathway via multiple pathways, multiple effects, and multiple targets to inhibit inflammation and curb the occurrence and development of sepsis, which has gradually become a hot spot in the prevention and treatment of sepsis. Moreover, studies have suggested that TCM has unique advantages in the treatment of sepsis. TCM can regulate the PI3K/Akt signaling pathway to inhibit inflammation, reduce oxidative stress, and control apoptosis in the prevention and treatment of sepsis. Despite the research progress, a systematic review remains to be performed regarding the TCM treatment of sepsis by regulating the PI3K/Akt signaling pathway. After reviewing relevant papers published in recent years, this study systematically summarizes the relationship between PI3K/Akt pathway and sepsis and the role of TCM in the treatment of sepsis, aiming to provide new ideas for the potential treatment of sepsis and the development of new drugs.
5.Risk assessment of hearing loss caused by occupational noise exposure in an automobile manufacturing plant
Kelu HAO ; Xiaoxiao GUO ; Jing LIU ; Qiang ZENG
Journal of Public Health and Preventive Medicine 2025;36(1):105-109
Objective To assess the risk of hearing loss caused by occupational noise exposure in workers in an automobile manufacturing plant in Tianjin, China, and to perform risk management. Methods Occupational health field investigation and noise exposure measurements were conducted from July to December 2023, and physical examination data were collected. ISO 1999:2013(E) Acoustics-Estimation of Noise-Induced Hearing Loss and WS/T 754-2016 “Guidelines for Risk Management of Occupational Disease Hazards Caused by Noise” were used to predict the risk of high-frequency hearing loss and occupational noise induced deafness for operational workers and make a risk classification. Results The noise intensity of each workshop was 79.4 to 95.5 dB(A), and the maximum noise intensity of welding and stamping exceeded the standard. The results of the assessment showed that the noise level remained unchanged, and the risk of HFHL and ONID in workers increased as the predicted age and length of service increased. It was predicted that after the age of 40, the maximum risk of hearing loss in welding workers would be high risk, and the risk of stamping workers would be at higher risk, suggesting that welding and stamping were the key control posts of noise hazards in the enterprise. The N50 prediction values of permanent hearing threshold displacement caused by potential noise at all frequencies for final assembly and painting workers were lower than the measured values. Conclusion The consequences of hearing loss for workers in the welding and stamping shop noise operations at this automobile manufacturing plant are relatively serious and require risk management.
6.Renshen Yangrongtang Alleviating Myelosuppression by Reducing Neutrophil Extracellular Traps Through Regulating ROS/MPO
Jing ZHANG ; Rongxing LIU ; Jinhao ZENG ; Qing NIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):39-46
ObjectiveTo investigate the potential mechanism of Renshen Yangrongtang in alleviating myelosuppression by regulating the expression of reactive oxygen species (ROS), myeloperoxidase (MPO), and neutrophil extracellular traps (NETs). MethodsK562 cells were divided into blank group, etoposide group (40 μmol·L-1), and etoposide+Renshen Yangrongtang freeze-dried powder groups with low-, medium-, and high-dose (2, 4, 8 g·L-1). Liquid chromatography-mass spectrometry (LC-MS) was used to determine the freeze-dried powder of Renshen Yangrongtang. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect ROS, MPO, and NETs expression in each group. Western blot analysis was performed to assess intracellular MPO and NE expressions. Twenty 8-week-old male mice were randomly divided into blank group, etoposide group (100 mg·kg-1), and etoposide + Renshen Yangrongtang groups with low-, medium-, and high-dose (0.1, 0.5, 2.0 g·kg-1). Except for the blank group that received PBS via gavage at room temperature, and the etoposide group that received an intraperitoneal injection for 3 days, the remaining groups received gavage of Renshen Yangrongtang for 14 consecutive days after 3 days of etoposide administration. The peripheral blood related indicators were detected through an automated hematology analyzer; Western blot analysis was performed to assess MPO and neutrophil elastase (NE) expression changes in the marrow cells of mice. Enzyme-linked immunosorbent assay (ELISA) was used to detect ROS, MPO, and NETs changes in the marrow cells of mice. MPO and NE on femur bones were stained through immunohistochemistry. Scanning electron microscopy was used to analyze the structural changes of NETs in the marrow cells of mice after drug administration. ResultsLC-MS results showed that the freeze-dried powder of Renshen Yangrongtang contained complete technical materials such as Chinese angelica, Astragalus mongholicus, and ginseng. In K562 cells, compared with the etoposide group, ELISA results indicated that the concentrations of MPO, ROS, and NETs in the etoposide + Renshen Yangrongtang medium and high-dose groups were decreased (P<0.05, P<0.01), and Western blot data showed that the etoposide high-dose group significantly reduced the expression of MPO and NE protein in K562 cells (P<0.05, P<0.01). In vivo, compared with the etoposide group, the number of RBC, WBC, and PLT in the etoposide+Renshen Yangrongtang high-dose group increased significantly (P<0.05). ELISA results suggested that in the etoposide+Renshen Yangrongtang low-, medium-, and high-dose groups, the concentration of mice ROS, MPO, and NETs significantly decreased (P<0.05, P<0.01). Western blot results revealed that compared with the etoposide group, the expressions of MPO and NE in the marrow cells of mice in the etoposide + Renshen Yangrongtang low-, medium- and high-dose groups were significantly decreased (P<0.05, P<0.01). Scanning electron microscopy observations revealed that Renshen Yangrongtang reduced the NETs structure generation in the marrow cells of mice after the influence of etoposide. ConclusionRenshen Yangrongtang can alleviate etoposide-induced myelosuppression by inhibiting ROS/MPO and reducing the formation of intracellular NETs.
7.Mechanism of Shoutaiwan in Treatment of Recurrent Spontaneous Abortion: A Review
Xue DANG ; Feixiang LIU ; Yanchen FENG ; Zhiying CHE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):283-291
Recurrent spontaneous abortion (RSA) is a common gynecological disease during pregnancy, clinically characterized by repeated spontaneous abortions, yet its pathological mechanism remains incompletely understood. Traditional Chinese medicine attributes the pathogenesis of RSA to the deficiency of Chong Ren and the lack of fetal solidity. It has amassed experience in treating RSA, with Shoutaiwan being widely utilized for addressing miscarriage symptoms such as habitual abortion due to kidney deficiency, bleeding during pregnancy, and fetal movement. In recent years, there has been a gradual increase in experimental studies on the application of Shoutaiwan in treating RSA and on related experiments. These studies have demonstrated that Shoutaiwan preserves the fetus mainly by modulating hormone balance, alleviating immune inflammation, and enhancing blood coagulation equilibrium during pregnancy. Besides, through the modulation of key signaling pathways such as nuclear factor, erythroid 2 like 2 (Nrf2)/heme oxygenase-1 (HO-1) and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT), as well as mitogen-activated protein kinase (MAPK), Shoutaiwan has improved cellular antioxidant capacity, adjusted the phenotype of trophoblast and metaphase cells, and inhibited immune rejection, thus improving the pregnancy success rate. These findings not only elucidate the diverse biological foundations underlying Shoutaiwan's efficacy in treating RSA but also offer a scientific rationale for its clinical application and further mechanism research. Nonetheless, there remains a dearth of systematic reviews on RSA treatment with Shoutaiwan. Therefore, this review summarizes and synthesizes existing research findings to systematically analyze existing literature and studies, delving deeply into the principal pharmacological effects and associated signaling pathways of Shoutaiwan in regulating RSA. It aims to establish crucial reference points for its clinical application in RSA treatment and future experiments and research.
8.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
9.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
10.Clinical Observation on 60 Cases of Knee Osteoarthritis Treated with Heat-Sensitive Moxibustion
Lu TIAN ; Hongwu XIE ; Meihua LIU ; Jing ZHANG ; Shaozhong XU ; Changjun LI ; Zhixiong KOU
Journal of Traditional Chinese Medicine 2025;66(5):492-500
ObjectiveTo explore the central neuroregulation mechanism of heat-sensitive moxibustion for knee osteoarthritis on pain relief. MethodsThirty patients who did not have experience of Deqi (得气) during heat-sensitive moxibustion treatment were assigned to the "non-Deqi group", while another 30 patients who had experience of Deqi were assigned to the "Deqi group". Both groups received moxibustion at the left Heding (EX-LE2) acupoint. In the Deqi group, after the patients experienced sensation of Deqi at the acupoint, moxibustion was applied at approximately 3 cm from the skin for 10 minutes; in the non-Deqi group, moxibustion was also applied at approximately 3 cm from the skin for 10 minutes. Both groups received treatment once daily for 10 consecutive days. Knee joint pain was assessed before and after treatment using the visual analog scale (VAS). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on all participants before the first treatment session and after the final session on the 10th day. The fractional amplitude of low-frequency fluctuations (fALFF) maps before and after treatment were processed using the SPM12 module by MATLAB. ResultsAfter treatment, VAS scores in both groups were significantly lower than before treatment (P<0.05 or P<0.01), with the Deqi group showing significantly lower VAS scores than the non-Deqi group (P<0.01). Compared to before treatment, the Deqi group exhibited significant activation in the prefrontal cortex (t = 6.28), white matter (t = 6.36), and left temporal lobe (t = 9.33), while significant inhibition was observed in the occipital lobe (t = -9.86) and right cerebrum (t = -4.54, P<0.01); in the non-Deqi group, significant changes after treatment were observed in the left occipital lobe (t = -6.42), left medial frontal gyrus (t = -4.35), left middle frontal gyrus (t = -4.74), right superior frontal gyrus (t = -4.82), right superior temporal gyrus (t = -6.61), and right cerebellar posterior lobe (t = -8.64), all of which were in inhibited states (P<0.01). Compared to the non-Deqi group, the Deqi group exhibited significant activation after treatment in the external nucleus (t = 5.77), white matter (t = 3.58), right cerebrum (t = 5.84), left cerebellum (t = 5.35), and left cerebrum (t = 4.32), while significant inhibition was observed in the prefrontal cortex (t = -4.16), occipital lobe (t = -4.87), and precentral gyrus (t = -4.46, P<0.01). ConclusionsHeat-sensitive moxibustion provides better analgesic effects for knee osteoarthritis under state of Deqi. Its central neuroregulation mechanism may be related to the involvement of the frontal lobe, temporal lobe, occipital lobe, external nucleus, white matter, right cerebrum, left cerebellum, left cerebrum, and precentral gyrus in modulating pain signals.


Result Analysis
Print
Save
E-mail