1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
3.Development of a new paradigm for precision diagnosis and treatment in traditional Chinese medicine
Jingnian NI ; Mingqing WEI ; Ting LI ; Jing SHI ; Wei XIAO ; Jing CHENG ; Bin CONG ; Boli ZHANG ; Jinzhou TIAN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):43-47
The development of traditional Chinese medicine (TCM) diagnosis and treatment has undergone multiple paradigms, evolving from sporadic experiential practices to systematic approaches in syndrome differentiation and treatment and further integration of disease and syndrome frameworks. TCM is a vital component of the medical system, valued alongside Western medicine. Treatment based on syndrome differentiation embodies both personalized treatment and holistic approaches; however, the inconsistency and lack of stability in syndrome differentiation limit clinical efficacy. The existing integration of diseases and syndromes primarily relies on patchwork and embedded systems, where the full advantages of synergy between Chinese and Western medicine are not fully realized. Recently, driven by the development of diagnosis and treatment concepts and advances in analytical technology, Western medicine has been rapidly transforming from a traditional biological model to a precision medicine model. TCM faces a similar need to progress beyond traditional syndrome differentiation and disease-syndrome integration toward a more precise diagnosis and treatment paradigm. Unlike the micro-level precision trend of Western medicine, precision diagnosis and treatment in TCM is primarily reflected in data-driven applications that incorporate information at various levels, including precise syndrome differentiation, medication, disease management, and efficacy evaluation. The current priority is to accelerate the development of TCM precision diagnosis and treatment technology platforms and advance discipline construction in this area.
4.POEMS syndrome with hepatosplenomegaly as the initial manifestation: A report of two cases
Ye ZHANG ; Wenqing WANG ; Jing LI ; Qianrong BAI ; Jiayu LI ; Yan CHENG ; Miaomiao FANG ; Nana GAO ; Changxing HUANG
Journal of Clinical Hepatology 2025;41(1):127-132
POEMS syndrome is a rare condition associated with plasma cell disorders, and it often involves multiple systems and has diverse clinical manifestations. This article reports two cases of POEMS syndrome with hepatosplenomegaly as the initial manifestation. During the course of the disease, the patients presented with lower limb weakness, hepatosplenomegaly, lymph node enlargement, ascites, hypothyroidism, positive M protein, and skin hyperpigmentation, and 18F-FDG PET-CT imaging revealed bone lesions mainly characterized by osteolytic changes and plasma cell tumors. There was an increase in the serum level of vascular endothelial growth factor. The patients were finally diagnosed with POEMS syndrome, and the symptoms were relieved after immunomodulatory treatment.
5.The Role and Mechanism of Lactate Produced by Exercise in The Nervous System
Jing MA ; Shu-Min BO ; Yang CHENG
Progress in Biochemistry and Biophysics 2025;52(2):348-357
Lactate, with a chemical formula of C3H6O3, is an intermediate product of glucose metabolism in the body and a raw material for hepatic gluconeogenesis. Under physiological resting conditions, the body mainly relies on aerobic oxidation of sugar and fat for energy supply, so the blood lactate concentration is lower. However, during exercise, the enhanced glycolysis in skeletal muscles leads to the significant release of lactate into the bloodstream, causing a marked increase in blood lactate concentration. Traditionally, lactate has been regarded as a metabolic waste product of glycolysis and a contributor to exercise-induced fatigue. Nevertheless, recent studies have revealed that, in humans, lactate is a major vehicle for carbohydrate carbon distribution and metabolism, serving not only as an energy substance alongside glucose but also as a vital component in various biological pathways involved in cardiac energetics, muscle adaptation, brain function, growth and development, and inflammation therapy. Two primary pathways can elevate lactate levels in neurons during exercise. One is peripheral skeletal muscle-derived lactate, which can enter the bloodstream and cross the blood-brain barrier into the brain with the assistance of monocarboxylate transporters (MCTs) from the solute carrier family 16 (SLC16). The other is the central brain-derived pathway. During exercise, neuronal activity is enhanced, promoting the secretion of neuroactive substances such as glutamate, norepinephrine, and serotonin in the brain. This activates astrocytes to break down glycogen into lactate and stimulates glutamate from the presynaptic terminal into the synaptic cleft. It upregulates the glucose transport protein-1 (GLUT-1) expression, allowing astrocytes to convert glucose into lactate through glycolysis. The lactate is produced via peripheral pathways and central pathways during exercise are transported by astrocyte membrane monocarboxylate transporters MCT1 and MCT4 to the extracellular space, where neurons take it up through neuronal cell membrane MCT2. The lactate in neurons can serve as an alternative energy source of glucose for neuronal functional activities, meeting the increased energy demands of synaptic activity during exercise, and maintaining energy balance and normal physiological function in the brain. Additionally, acting as a signaling molecule lactate can enhance synaptic plasticity through the SIRT1/PGC-1α/FNDC5 and ERK1/2 signaling pathways, lactate can promote angiogenesis by upregulating VEGF-A expression through the PI3K/Akt and ERK1/2 signaling pathways, stimulate neurogenesis via the Akt/PKB signaling pathway, and reduce neuroinflammation through activation of the “lactate timer”. Overall, lactate contributes to the protection of neurons, the promotion of learning and memory, the enhancement of synaptic plasticity, and the reduction of neuroinflammation in the nervous system. While lactate may serve as a potential mediator for information exchange between the peripheral and central nervous systems during exercise, further experimental research is needed to elucidate its action mechanisms in the nervous system. In addition, future studies should utilize advanced neurophysiological and molecular biology techniques to uncover the importance of lactate in maintaining brain function and preventing neurological diseases. Accordingly, this article first reviews the historical research on lactate, then summarizes the metabolic characteristics and neuronal sources of lactate, and finally explores the role and mechanisms of exercise-induced lactate in the nervous system, aiming to provide new perspectives and targets for understanding the mechanisms underlying exercise promotion of brain health.
6.Decision-making behavior in patients with depressive disorder and its relationship with depressive and anxiety symptoms
Yuxiang WANG ; Luoya ZHANG ; Maomao ZHANG ; Juan DENG ; Yanjie PENG ; Xiaotong CHENG ; Kezhi LIU ; Wei LEI ; Jing CHEN
Sichuan Mental Health 2025;38(1):22-27
BackgroundPatients with depressive disorder often exhibit impaired decision-making functions. However, the relationship between decision-making abilities and depressive and anxiety symptoms in these patients remains unclear. ObjectiveTo explore the characteristics of decision-making behavior in patients with depressive disorder, and to analyze its relationship with clinical symptoms. MethodsA total of 48 patients diagnosed with depressive disorder according to the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) were recruited from the Department of Psychosomatic Medicine of the Affiliated Hospital of Southwest Medical University from October 2020 to May 2023. Concurrently, 52 healthy individuals matched for age and gender were recruited from Luzhou as the control group. Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI) were used for assessment, and decision-making behavior was evaluated using Probabilistic Reversal Learning (PRL) task. Indicators assessed included the number of trials to criterion, perseverative errors, win-stay rate and lose-shift rate. Spearman correlation analysis was used to assess the correlation between BDI and BAI scores and PRL task indicators. ResultsThe depression group showed a significantly higher lose-shift rate compared with the control group (t=3.684, P<0.01). There were no statistically significant differences between two groups in trials to criterion, perseverative errors and win-stay rate (t=0.329, 0.132, 0.609, P>0.05). In depression group, BDI and BAI scores were positively correlated with the win-stay rate(r=0.450, 0.398, P<0.01). ConclusionPatients with depressive disorder are more likely to change their decision-making strategies following negative outcomes. Furthermore, the severity of depressive and anxiety symptoms is associated with a greater propensity to maintain existing decisions after receiving positive feedback. [Funded by 2019 Joint Project of Luzhou Science and Technology Bureau-Southwest Medical University (number, 2019LZXNYDJ39]
7.Determination of biological activity of teduglutide by a homogeneous time-resolved fluorescence method
Xiao-ming ZHANG ; Ran MA ; Li-jing LÜ ; Lü-yin WANG ; Ping LÜ ; Cheng-gang LIANG ; Jing LI
Acta Pharmaceutica Sinica 2025;60(1):211-217
In this study, we constructed a GLP-2R-HEK293 cell line and established a method for the determination of the
8.Multidimensional Analysis of Mechanisms of Nuciferine Against Cerebral Ischemia Based on Transcriptomic Data
Yingying QIN ; Peng LI ; Sha CHEN ; Yan LIU ; Jintang CHENG ; Qingxia XU ; Guohua WANG ; Jing ZHOU ; An LIU ; Chang CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):184-191
ObjectiveStudies have shown that nuciferine has anti-cerebral ischemia effect, but the specific mechanism of action has not been elaborated. Based on the transcriptome results, the pharmacological mechanism of nuciferine against cerebral ischemia was analyzed from multiple dimensions including tissue, cell, pathological process, biological process and signaling pathway. MethodsThirty SD rats were randomly divided into the sham group, model group and nuciferine group(40 mg·kg-1) according to weight. Except for the sham group, the model of middle cerebral artery occlusion(MCAO) was established by thread embolization method after 30 min of administration in the other two groups. Twenty-four hours after surgery, transcriptome sequencing was used to detect the gene expression profiles in the cortex penumbra of rat cerebral tissue, and gene ontology(GO) and kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed for differentially expressed genes. The mechanismof nuciferine against cerebral ischemia was analyzed from 5 dimensions of tissue, cell, pathological process, biological process and signaling pathway by the transcriptome-based multi-scale network pharmacology platform(TMNP). ResultsTranscriptome sequencing and gene quantitative analysis showed that 667 genes were significantly reversed by nuciferine. Further enrichment analysis of KEGG and GO suggested that the pathways of nuciferine involved regulating stress response, ion transport, cell proliferation and differentiation, and synaptic function. TMNP research found that at the tissue level, nuciferine could significantly improve the cerebral tissue injury caused by ischemia. At the cellular and pathological levels, nuciferine could play an anti-cerebral ischemia role by improving the state of various nerve cells, mobilizing immune cells, regulating inflammation. And at the level of biological processes and signaling pathways, nuciferine mainly acted on the processes such as vascular remodeling, inflammation-related signaling pathways, and synaptic signaling. ConclusionCombined with the results of transcriptome sequencing, gene quantitative analysis and TMNP, the mechanism of nuciferine against cerebral ischemia may be related to processes such as intervening in stress response and inflammation, affecting vascular remodeling and regulating synaptic function. These results can provide a basis and reference for further study of the pharmacological mechanism of nuciferine against cerebral ischemia.
9.Impact of HLA antigen and antibody expression on cross-matching and transfusion effect
Honghong HE ; Jing CHENG ; Yihan WANG ; Min JIANG ; Longhai TANG
Chinese Journal of Blood Transfusion 2025;38(3):316-321
[Objective] To study the relationship between the expression intensity of HLA-Ⅰ platelet antibodies in patients with platelet transfusion refractoriness (PTR) and platelet cross-matching, and to further evaluate other factors in order to provide relevant data support for improving platelet transfusion efficiency and optimizing platelet transfusion regimens. [Methods] Luminex single antigen flow cytometry was used to detect platelet specific antibodies in 35 patients with hematological disease. Subsequently, the Capture-P method was employed to perform 102 crossmatchings between plasma with HLA-Ⅰ antibodies and platelets with known HLA-Ⅰ genotypes. The cross-matching results were assessed and the clinical transfusion outcomes were tracked. [Results] The positive detection rate of HLA-Ⅰ and HPA antibodies in this study was 48.6% (17/35). The negative rate of cross-matching in 102 cases was 37.3% (38/102). Multiple factors affect platelet cross-matching, such as HLA-Ⅰ antibody expression level and antibody type, antigen expression level, cross-reactivity group and eplets. Among them, the expression level and antibody type of HLA-Ⅰ antibody are the main influencing factors. However, the effectiveness of clinical platelet transfusion is not completely determined by the compatibility of platelet cross-matching. [Conclusion] In addition to avoiding strong positive HLA-Ⅰ antibodies, clinical matching should also be vigilant against the serological cross-incompatibility caused by weak positive HLA-Ⅰ antibodies. It may be necessary to establish HLA-Ⅰ low expression antigen database as a better alternative platelet donor selection strategy, and gradually explore the effectiveness of ‘low expression mismatch’ strategy for clinical platelet transfusion.
10.Mechanism of Anmeidan in Improving Learning and Memory in Insomnia Model Rats by Mediating Immunoinflammation via cGAS/STING Signaling Pathway
Bo XU ; Zijing YE ; Ping WANG ; Jing CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):27-35
ObjectiveTo investigate the mechanism by which Anmeidan improves learning and memory in insomnia rats by regulating the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway to influence immunoinflammation. MethodsSixty SD rats were randomly divided into a blank group, a model group, a suvorexant group (30 mg·kg-1), and Anmeidan low-, medium-, and high-dose groups (4.55, 9.09, and 18.18 g·kg-1), with 10 rats in each group. The insomnia rat model was induced by intraperitoneal injection of p-chlorophenylalanine (PCPA). Anmeidan decoction and normal saline were administered by gavage for 28 days at the corresponding doses. Morris water maze and new object recognition tests were used to assess learning and memory functions. Hematoxylin-eosin (HE) staining and Nissl staining were performed to observe hippocampal cell morphology. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum levels of interleukin-1 (IL-1), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-12 (IL-12), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α). Western blot and Real-time quantitative polymerase chain reaction(Real-time PCR) were used to detect the relative protein and mRNA expression levels of hippocampal cGAS and STING. ResultsCompared with the blank group, the 5-HT content in the model group was significantly reduced (P<0.01). The latency to the upper platform and total distance were significantly increased (P<0.05, P<0.01), while the residence time in the target quadrant and the number of platform crossings were significantly reduced (P<0.01), and the relative recognition index for new objects was significantly lower (P<0.01). The morphology and arrangement of hippocampal neurons were loose and disordered, with a decreased number of intracellular Nissl bodies. The relative expression levels of IL-1, IL-1β, IL-6, IL-8, IL-12, IL-18, TNF-α, cGAS, and STING pathway proteins and mRNA were significantly upregulated (P<0.01). Compared with the model group, the latency to the upper platform in the high-dose Anmeidan group was significantly shortened (P<0.05). In the medium- and high-dose Anmeidan groups and the suvorexant group, the residence time in the target quadrant and the number of platform crossings were significantly increased (P<0.01). The total distance traveled was significantly reduced (P<0.01), and the relative recognition index for new objects was significantly increased (P<0.01). The hippocampal neurons were more neatly arranged, and the number of intracellular Nissl bodies increased. The expression of IL-1, IL-1β, IL-6, IL-8, IL-12, IL-18, TNF-α, and cGAS proteins and mRNA in the medium- and high-dose Anmeidan groups was significantly downregulated (P<0.05, P<0.01). ConclusionAnmeidan improves learning and memory in insomnia rats, possibly by suppressing immunoinflammation through inhibition of the cGAS/STING signaling pathway.


Result Analysis
Print
Save
E-mail