1.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
		                        		
		                        			
		                        			Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders. 
		                        		
		                        		
		                        		
		                        	
2.Investigation on the current status and optimization strategies for the standardized on-the-job training for community clinical pharmacists in Shanghai
Yangjiayi XIANG ; Jing SHENG ; Liping WANG ; Lie LUO ; Yuan YUAN ; Xiaodan ZHANG ; Yan LI ; Bin WANG ; Guanghui LI
China Pharmacy 2025;36(13):1568-1573
		                        		
		                        			
		                        			OBJECTIVE To systematically investigate the current status and effectiveness of the standardized on-the-job training program for community clinical pharmacists in Shanghai, and to provide a scientific basis for optimizing the training scheme. METHODS A questionnaire survey was conducted to collect the data from trainees and mentor pharmacists who participated in the program between 2016 and 2024. The survey examined their basic information, evaluations of the training scheme, satisfaction with training outcomes, and suggestions for improvement. Statistical analyses were also conducted. RESULTS A total of 420 valid responses were collected, including 340 from trainees and 80 from mentor pharmacists. Before training, only 30.29% of trainees were engaged in clinical pharmacy-related work, whereas this proportion increased to 73.24% after training. Most mentor pharmacists had extensive experience in clinical pharmacy (76.25% with ≥5 years of experience) and mentoring (78.75% with ≥3 teaching sessions). Totally 65.59% of trainees and 55.00% of mentor pharmacists believed that blended training yielded the best learning outcomes. Over 80.00% of both trainees and mentor pharmacists considered the overall training duration, theoretical study time, and practical training time to be reasonable. More than 95.00% of trainees and mentor pharmacists agreed that the homework and assessment schemes were appropriate. Trainees rated the relevance of training content to their actual work highly (with an average relevance score >4.5), though they perceived the chronic disease medication therapy management module as significantly more challenging than the prescription review and evaluation module and the home-based pharmaceutical care module. The average satisfaction score of trainees and mentor pharmacists with the training effectiveness of each project was above 4 points, indicating a high overall satisfaction. Inadequate provision of teaching resources was unanimously recognized by trainees and mentor pharmacists as the key area requiring improvement. CONCLUSIONS The standardized on-the-job training program for community clinical pharmacists in Shanghai has contributed to improving pharmaceutical services in community healthcare settings. However, ongoing improvements must concentrate on content design, resource development, and faculty cultivation.
		                        		
		                        		
		                        		
		                        	
3.Simultaneous determination of 13 aromatic amine compounds in workplace air by high performance liquid chromatography
Weimin XIE ; Ruibo MENG ; Zuofei XIE ; Jing YUAN ; Jiaheng HE ; Jiawen HU ; Weifeng RONG
China Occupational Medicine 2025;52(2):182-187
		                        		
		                        			
		                        			Objective To establish a liquid chromatography method for the simultaneous determination of 13 aromatic amine compounds (AAs) in workplace air. Methods A total of 13 AAs in both vapor and aerosol phases were collected in workplace air using a new GDH-6 sampling tube. Samples were desorbed and eluted with methanol, separated using a Symmetry Shield™ RP18 reversed-phase liquid chromatography column, and detected with a diode array detector. Quantification was performed using an external standard method. Results The linear range of the 13 AAs measured by this method was 0.02-373.60 μg/L with the correlation coefficients greater than 0.999 0. The minimum detection concentration was 0.09-14.37 μg/m3, and the minimum quantitative concentration was 0.31-47.90 μg/m3 (both calculated based on sampling 15.0 L of air and 3.0 mL of elution volume). The average desorption and elution efficiency ranged from 97.46% to 101.23%. The within-run relative standard deviation (RSD) was 0.10%-5.99%, and the between-run RSD was 0.17%-2.71%. Samples could be stably stored in sealed conditions at 2-8 ℃ for more than seven days. Conclusion This method is suitable for the simultaneous determination of 13 AAs in workplace air, including both vapor and aerosol phases. 
		                        		
		                        		
		                        		
		                        	
4.Simultaneous determination of four thiol derivatives in workplace air by gas chromatography
Ruibo MENG ; Jing YUAN ; Jiawen HU ; Jiaheng HE ; Jingjing QIU ; Zuokan LIN ; Ziqun ZHANG ; Weifeng RONG ; Banghua WU
China Occupational Medicine 2025;52(2):188-192
		                        		
		                        			
		                        			Objective To establish a method for simultaneous determination of four high-molecular-weight thiol derivatives (TDs) in workplace air by gas chromatography. Methods The four kinds of vapor-phase macromolecular TDs (1-pentanethiol, 1-hexanethiol, 1-benzyl mercaptan, and n-octanethiol) in the workplace air were collected using the GDH-1 air sampling tubes, desorbed with anhydrous ethanol, separated on a DB-FFAP capillary column, and determined by flame ionization detector. Results The quantitation range of the four TDs was 0.30-207.37 mg/L, with the correlation coefficients greater than 0.999 00. The minimum detection mass concentrations and minimum quantitation mass concentrations were 0.18-0.32 and 0.60-1.05 mg/m3, respectively (both calculated based on the 1.5 L sample and 3.0 mL desorption solvent). The mean desorption efficiencies ranged from 87.07% to 103.59%. The within-run and between-run relative standard deviations were 1.92%-8.22% and 1.89%-8.45%, respectively. The samples can be stored at room temperature or 4 ℃ for three days and up to 7 days at -18 ℃. Conclusion This method is suitable for the simultaneous determination of four vapor-phase TDs in workplace air. 
		                        		
		                        		
		                        		
		                        	
5.Effects of Xiaozhong Zhitong Mixture (消肿止痛合剂) on Angiogenesis and the Dll4/Notch1 Signaling Pathway in Wound Tissue of Diabetic Foot Ulcer Model Rats
Xiao HAN ; Tao LIU ; Yuan SONG ; Jie CHEN ; Jiaxuan SHEN ; Jing QIAO ; Hengjie WANG ; Lewen WU ; Yazhou ZHAO
Journal of Traditional Chinese Medicine 2025;66(16):1695-1703
		                        		
		                        			
		                        			ObjectiveTo investigate the potential machanism of Xiaozhong Zhitong Mixture (消肿止痛合剂, XZM) in the treatment of diabetes foot ulcer (DFU). MethodsFifty SD rats were randomly divided into blank group, model group, XZM group, inhibitor group, XZM plus inhibitor group (combination group), with 10 rats in each group. Except for the blank group, rats were fed with high-sugar, high-fat, high-cholesterol diet, intraperitoneally injected with streptozotocin, and subjected to skin defect to establish DFU model. After successful modeling, the XZM group and the combination group were given 1 ml/(100 g·d)of XZM by gavage, while the blank group, model group, and inhibitor group were all given an equal volume of 0.9% sodium chloride injection by gavage. Thirty minutes later, the inhibitor group and the combination group were intraperitoneally injected with 5 mg/(kg·d) of Notch1 inhibitor DAPT. All groups were treated once a day. After 14 days of administration, the skin tissue from the dorsal foot of the blank group rats and wound tissue from the other groups were collected. The pathological changes of granulation tissue in the wound were detected using hematoxylin eosin (HE) staining. The microvascular density (MVD) in wounds was detected through immunohistochemical staining. Real time fluorescence quantitative polymerase chain reaction (RT-PCR) and western blotting were used to detect the mRNA and protein levels of Notch1 homolog (Notch1), Delta-like ligand 4 (Dll4), Delta-like ligand 4 (VEGF), and angiopoietin 2 (Ang-2), respectively. ResultsHistological results showed that the epidermal structure in the dorsal foot skin tissue of the rats in the blank group was intact. In the wound tissue of the model group, the epidermis exhibited excessive keratinization, vacuolar cytoplasm, and a large number of inflammatory cells infiltrating the tissue, while in the XZM group, a large amount of scab formation was observed in the epidermis, with no significant inflammatory cell infiltration and a noticeable increase in fibroblasts. In the combination group and the inhibitor group, partial epidermal scab formation was observed in the wound tissue with a small amount of inflammatory cell infiltration. Compared to those in the blank group, the MVD in the wound tissue increased in the model group, as well as the mRNA expression and protein levels of Notch1 and Dll4, while VEGFA and Ang-2 mRNA expression and protein levels significantly decreased (P<0.05 or P<0.01). Compared to those in the model group, the MVD in the wound tissue of all medication groups significantly increased, and the mRNA and protein levels of Notch1 and Dll4 decreased, while VEGFA and Ang-2 mRNA expression and protein levels increased (P<0.05 or P<0.01). Compared to the XZM group, the inhibitor group and the combination group showed decreased MVD in wound tissue, increased Notch1 and Dll4 mRNA and protein levels, and decreased expression of VEGFA and Ang-2 mRNA and proteins (P<0.05 or P<0.01). ConclusionXZM can effectively promote wound healing in DFU rats, and its mechanism of action may be related to the inhibition of Dll4/Notch1 signaling pathway in the wound tissue, therey promoting angiogenesis. 
		                        		
		                        		
		                        		
		                        	
6.Effects of Zhimu (Anemarrhena asphodeloides)-Huangbai (Phellodendron amurense) Medicinal Pair on Femoral Microstructure and Osteogenic-Adipogenic Differentiation in Ovariectomized Osteoporosis Model Rats
Chuncai LI ; Mingxing YUAN ; Jiawei LI ; Jing DENG ; Chongyang SHEN ; Yuan LIU
Journal of Traditional Chinese Medicine 2025;66(16):1704-1710
		                        		
		                        			
		                        			ObjectiveTo investigate the potential mechanisms of Zhimu (Anemarrhena asphodeloides)-Huangbai (Phellodendron amurense) medicinal pair in alleviating postmenopausal osteoporosis (PMOP). MethodsSixty unpregnant female SD rats were randomly divided into five groups, blank group, model group, low-dose Zhimu-Huangbai group, high-dose Zhimu-Huangbai group, and estradiol group, with 12 rats in each group. Except for the blank group, all other groups had their ovaries removed to create PMOP rat models, while the blank group only had the fat tissue around the ovaries removed. One week after the ovarian removal, the low-dose and high-dose Zhimu-Huangbai groups received concentrated solution of Zhimu and Huangbai with 1.8, 7.2 g/(kg·d) via gavage, the estradiol group received estradiol solution 0.09 mg/(kg·d) via gavage, and the blank group and the model group received 10 ml/(kg·d) of normal saline via gavage, once daily for 12 weeks. Before sampling, the body mass of the rats was recorded, and uterine tissue was taken to calculate the uterine index. The levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in serum were detected by ELISA; micro CT was used to examine the parameters of femoral microstructure, including bone volume/tissue volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), bone mineral density (BMD), trabecular separation (Tb.Sp), and cortical bone area (Ct.Ar). HE staining was used to observe pathological changes in the femur; RT-qPCR was used to detect the mRNA expression of osteogenic-adipogenic differentiation-related factors in femoral tissue, including Runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (BMP-2), peroxisome proliferator-activated receptor γ (PPARγ), chemerin and chemokine-like receptor 1 (CMKLR1). ResultsCompared with the blank group, the model group showed a significant increase in body mass, a significant decrease in the uterine index, BV/TV, Tb.N, Tb.Th and BMD, a significant increase in Tb.Sp, and serum IL-1β, IL-6, and TNF-α levels, a significant reduction of mRNA expression of Runx2 and BMP-2 in bone tissue, and a significant increased mRNA expression of PPARγ, chemerin, and CMKLR1 (P<0.01). HE staining revealed that the femoral tissue showed a reduction and sparsity of trabeculae, a significant enlargement of the medullary cavity, and a large number of fat cells. Compared to the model group, the low-dose, high-dose Zhimu-Huangbai groups, and estradiol group showed significant improvements in all the above-mentioned indicators (P<0.05 or P<0.01). HE staining revealed a significant increase in trabeculae, more organized arrangement, and a marked reduction in fat cells. Compared to low-dose Zhimu-Huangbai group, the high-dose Zhimu-Huangbai group exhibited a significant increase in the uterine index and BMD, and a significant reduction in body mass and PPARγ and Chemerin mRNA expression (P<0.05 or P<0.01). Compared to high-dose Zhimu-Huangbai group, the estradiol group showed a decrease in uterine index, BV/TV, Tb.N, Tb.Th, BMD, and BMP-2 mRNA expression, while the levels of IL-1β, TNF-α, and IL-6, as well as Tb.Sp and the mRNA expressions of PPARγ, chemerin, and CMKLR1 increased (P<0.05 or P<0.01). ConclusionThe Zhimu-Huangbai medicinal pair can alleviate PMOP bone loss, and its mechanism of action is related to reducing the levels of inflammatory factors, correcting the disorder of osteogenic-adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and promoting the differentiation of BMSCs into osteoblasts. 
		                        		
		                        		
		                        		
		                        	
7.Longitudinal cross lagged analysis of body mass index and weight stigma with depressive symptom in adolescents
DONG Ziqi, SONG Xinli, YUAN Wen, LI Jing, YANG Tian, ZHANG Xiuhong, SONG Yi, DONG Yanhui
Chinese Journal of School Health 2025;46(9):1242-1245
		                        		
		                        			Objective:
		                        			To explore the bidirectional associations among body mass index  Z scores (BMI  Z scores) and weight stigma with depressive symptoms in adolescents, thereby providing evidence for targeted intervention strategies.
		                        		
		                        			Methods:
		                        			A stratified cluster random sampling method was employed to select 18 301 adolescents aged 12-18 years from all 12 prefectures (103 counties) in the Inner Mongolia Autonomous Region, and two waves of longitudinal surveys were conducted in September 2023 (T1) and September 2024 (T2) among the adolescents. Weight stigma was assessed by using a self developed questionnaire, depressive symptom was measured with the Center for Epidemiologic Studies Depression Scale (CES-D), and BMI  Z scores were calculated according to the World Health Organization standards. Pearson correlation analysis was used to examine associations among variables, and cross lagged panel models were constructed to investigate the dynamic bidirectional relationships among the three variables.
		                        		
		                        			Results:
		                        			Adolescents  BMI  Z scores and weight stigma with depressive symptoms all exhibited autoregressive stability across the two time points (autoregressive paths, all  P <0.01). Cross lagged model comparisons indicated that the bidirectional path model achieved the best fit ( χ 2=12.65,  RMSEA =0.017,  CFI =1.000; △ χ 2=193.39,  P <0.01), supporting dynamic bidirectional associations among the three variables. After adjusting for gender, age, subjective social status and only child status, T1 BMI  Z scores among adolescents positively predicted T2 weight stigma ( β =0.061), and T1 weight stigma positively predicted T2 depressive symptoms ( β =0.608); in the reverse direction, T1 depressive symptoms predicted T2 weight stigma ( β =0.003), and T1 weight stigma predicted T2 BMI  Z scores ( β =0.081) (all  P <0.01).
		                        		
		                        			Conclusions
		                        			There is a bidirectional cross lagged relationship among adolescents  BMI  Z scores and weight stigma with depressive symptoms, suggesting that weight stigma may serve as a key psychological variable linking obesity and depressive symptoms. Greater attention should be paid to the potential threat of weight stigma to adolescents  mental health, with intervention strategies expanded from a solely physiological focus to encompass psychosocial dimensions.
		                        		
		                        		
		                        		
		                        	
8.Effects of Moxibustion at "Guanyuan (CV 4)" on Oxidative Stress and Autophagy-Related Gene Expression of Skin Tissue in Photoaging Model Rats
Qianqian HUI ; Yuan JING ; Sijie OUYANG ; Shijing YOU ; Boying TONG
Journal of Traditional Chinese Medicine 2025;66(6):621-628
		                        		
		                        			
		                        			ObjectiveTo explore the potential mechanism of moxibustion at Guanyuan (CV 4) in delaying skin photoaging. MethodsThirty-two male Wistar rats were randomly divided into four groups, namely blank group, model group, vitamin E group, and moxibustion group, with 8 rats in each group. Except for the blank group, dorsal skin of rats were exposed to ultraviolet (UV) radiation to establish a skin photoaging model. One week after modeling, the moxibustion group received moxibustion at "Guanyuan (CV 4)" once a day, five days per week; the vitamin E group received vitamin E (25 mg/kg·d) once a day by gavage, five days per week; the blank group, model group, and moxibustion group received an equivalent volume of normal saline via gavage; the intervention lasted for 7 weeks. After 7 weeks, dorsal skin tissues were collected to analyze the following indicators, such as skin tissue moisture content, histomorphological changes using hematoxylin-eosin (HE) staining, Collagen Ⅰ and collagen Ⅲ content using ELISA. Malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), hydrogen peroxide (H2O2), and catalase (CAT) activity in skin tissue were dectected. Western Blot was used to determin autophagy-related proteins, including microtubule-associated protein 1A/1B-light chain 3 (LC3), polyubiquitin-binding protein (p62), and autophagy-specific gene (Beclin-1); LC3, p62, and Beclin-1 mRNA expression was detected via qRT-PCR, and autophagosome formation was observed using transmission electron microscopy (TEM). ResultsHE staining showed that the epidermal structure in the blank group was orderly and evenly thick, while the model group exhibited uneven epidermal thickness. In the moxibustion group, the epidermis was well-structured, smooth, and uniform, with densely arranged dermal layers; the epidermis in the vitamin E group was thicker than that in the model group. Compared with the blank group, the model group exhibited decreased skin moisture content and reduced level of Collagen Ⅰ and collagen Ⅲ, reduced SOD, CAT, and GSH-Px activity in skin tissue, increased H2O2 and MDA activity, elevated p62 protein and mRNA expression, reduced LC3 and Beclin-1 protein and mRNA expression (P<0.05 or P<0.01). Compared with the model group, the moxibustion group showed significant improvement in all these indicators (P<0.05 or P<0.01); whereas the vitamin E group did not show a statistically significant difference in Collagen Ⅰ and collagen Ⅲ levels (P>0.05). TEM results showed that, compared with the blank group, the model group had atrophic skin cells, extensive mitochondrial vacuolization, and degraded cellular structures; the moxibustion group exhibited crescent- or cup-shaped autophagosomes with a significantly increased number of autophagosomes per unit area, whereas the vitamin E group showed less improvement than the moxibustion group. ConclusionMoxibustion at "Guanyuan (CV 4)" may alleviate skin photoaging by regulating oxidative stress imba-lance, modulating cellular autophagy, and promoting collagen synthesis, thereby slowing the aging process of the skin. 
		                        		
		                        		
		                        		
		                        	
9.Clinical Efficacy of Modified Huangqi Chifengtang in Treatment of IgA Nephropathy Patients and Exploration of Dose-effect Relationship of Astragali Radix
Xiujie SHI ; Meiying CHANG ; Yue SHI ; Ziyan ZHANG ; Yifan ZHANG ; Qi ZHANG ; Hangyu DUAN ; Jing LIU ; Mingming ZHAO ; Yuan SI ; Yu ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):9-16
		                        		
		                        			
		                        			ObjectiveTo explore the dose-effect relationship and safety of high, medium, and low doses of raw Astragali Radix in the modified Huangqi Chifengtang (MHCD) for treating proteinuria in immunoglobulin A (IgA) nephropathy, and to provide scientific evidence for the clinical use of high-dose Astragali Radix in the treatment of proteinuria in IgA nephropathy. MethodsA total of 120 patients with IgA nephropathy, diagnosed with Qi deficiency and blood stasis combined with wind pathogen and heat toxicity, were randomly divided into a control group and three treatment groups. The control group received telmisartan combined with a Chinese medicine placebo, while the treatment groups were given telmisartan combined with MHCD containing different doses of raw Astragali Radix (60, 30, 15 g). Each group contained 30 patients, and the treatment period was 12 weeks. Changes in 24-hour urinary protein (24 hUTP), traditional Chinese medicine (TCM) syndrome scores, effective rate, and renal function were observed before and after treatment. Safety was assessed by monitoring liver function and blood routine. ResultsAfter 12 weeks of treatment, 24 hUTP significantly decreased in the high, medium, and low-dose groups, as well as the control group (P<0.05, P<0.01). The TCM syndrome scores in the high, medium, and low-dose groups also significantly decreased (P<0.01). Comparisons between groups showed that the 24 hUTP in the high-dose group was significantly lower than in the medium, low-dose, and control groups (P<0.05, P<0.01), and the 24 hUTP in the medium-dose group was significantly lower than in the control group (P<0.05). The TCM syndrome scores in the high and medium-dose groups were significantly lower than in the low-dose and control groups (P<0.05, P<0.01). The total effective rates for proteinuria in the high, medium, low-dose, and control groups were 92.59% (25/27), 85.19% (23/27), 60.71% (17/28), and 57.14% (16/28), respectively. The effective rates in the high and medium-dose groups were significantly higher than in the low-dose and control groups (χ2=13.185, P<0.05, P<0.01). The effective rates for TCM syndrome scores in the high, medium, low-dose, and control groups were 88.89% (24/27), 81.48% (22/27), 71.43% (20/28), and 46.43% (13/28), respectively. The efficacy of TCM syndrome scores in the high and medium-dose groups was significantly higher than in the control group (χ2=14.053, P<0.01). Compared with pre-treatment values, there was no statistically significant difference in eGFR and serum creatinine in the high and medium-dose groups. However, eGFR significantly decreased in the low-dose and control groups after treatment (P<0.05), and serum creatinine levels increased significantly in the control group (P<0.05). No statistically significant differences were observed in urea nitrogen, uric acid, albumin, total cholesterol, triglycerides, liver function, and blood routine before and after treatment in any group. ConclusionThere is a dose-effect relationship in the treatment of IgA nephropathy with high, medium, and low doses of raw Astragali Radix in MHCD. The high-dose group exhibited the best therapeutic effect and good safety profile. 
		                        		
		                        		
		                        		
		                        	
10.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
		                        		
		                        			
		                        			ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail