1.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
2.Compatibility Principle and Efficacy Characteristics of Fuzi Shanzhuyutang from Perspective of Tangye Jingfa Tu
Xuxiao LYU ; Mingyue QI ; Hui ZHANG ; Rui JIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):210-216
Tangye Jingfa Tu is an important content in the ancient book Fuxingjue from Dunhuang, implying the fundamental principles of formula compatibility in traditional Chinese medicine (TCM). Our research group has delved into nearly 200 formulas (both classical and contemporary formulas) recorded in the Fangjixue under the theoretical framework of the deficiency or excess syndrome of five Zang-organs together with the reinforcing and reducing effects of Chinese medicinal materials of five flavors. We have initially elucidated the essential principles of the correspondence between formulas and syndromes, revealing the deep-level logic of medicinal material selection and compatibility, thus enriching the understanding about the core characteristics and essence of the diseases and syndromes targeted by formulas. The lunar year of 2024 is Jia Chen year. The formula recorded in Sanyin Jiyi Bingzheng Fanglun for treating the epidemic diseases characterized by excessive earth, prevalent dampness and wetness, and invasion of pathogenic factors into the kidney water in Jia Chen year is Fuzi Shanzhuyutang. Therefore, elucidating the compatibility principle of Fuzi Shanzhuyutang is of great significance for clinical prescription and medication modification in Jia Chen year. According to the Tangye Jingfa Tu theory on the deficiency or excess of syndrome of five Zang-organs and the reinforcing and reducing effects of Chinese medicinal materials of five flavors, this article dissects Fuzi Shanzhuyutang regarding the etiology and pathogenesis of the main indications, as well as the five-element properties and efficacy characteristics of Chinese medicinal materials constituting this formula. It explains the compatibility principles of Fuzi Shanzhuyutang and puts forward suggestions for modifying the formula to address different indications, providing a reference for guiding clinical syndrome differentiation and treatment.
3.Compatibility Principle and Efficacy Characteristics of Fuzi Shanzhuyutang from Perspective of Tangye Jingfa Tu
Xuxiao LYU ; Mingyue QI ; Hui ZHANG ; Rui JIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):210-216
Tangye Jingfa Tu is an important content in the ancient book Fuxingjue from Dunhuang, implying the fundamental principles of formula compatibility in traditional Chinese medicine (TCM). Our research group has delved into nearly 200 formulas (both classical and contemporary formulas) recorded in the Fangjixue under the theoretical framework of the deficiency or excess syndrome of five Zang-organs together with the reinforcing and reducing effects of Chinese medicinal materials of five flavors. We have initially elucidated the essential principles of the correspondence between formulas and syndromes, revealing the deep-level logic of medicinal material selection and compatibility, thus enriching the understanding about the core characteristics and essence of the diseases and syndromes targeted by formulas. The lunar year of 2024 is Jia Chen year. The formula recorded in Sanyin Jiyi Bingzheng Fanglun for treating the epidemic diseases characterized by excessive earth, prevalent dampness and wetness, and invasion of pathogenic factors into the kidney water in Jia Chen year is Fuzi Shanzhuyutang. Therefore, elucidating the compatibility principle of Fuzi Shanzhuyutang is of great significance for clinical prescription and medication modification in Jia Chen year. According to the Tangye Jingfa Tu theory on the deficiency or excess of syndrome of five Zang-organs and the reinforcing and reducing effects of Chinese medicinal materials of five flavors, this article dissects Fuzi Shanzhuyutang regarding the etiology and pathogenesis of the main indications, as well as the five-element properties and efficacy characteristics of Chinese medicinal materials constituting this formula. It explains the compatibility principles of Fuzi Shanzhuyutang and puts forward suggestions for modifying the formula to address different indications, providing a reference for guiding clinical syndrome differentiation and treatment.
4.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
5.Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023 edition).
Qing ZHAO ; Tong WANG ; Hongbin WANG ; Peng CAO ; Chengyu JIANG ; Hongzhi QIAO ; Lihua PENG ; Xingdong LIN ; Yunyao JIANG ; Honglei JIN ; Huantian ZHANG ; Shengpeng WANG ; Yang WANG ; Ying WANG ; Xi CHEN ; Junbing FAN ; Bo LI ; Geng LI ; Bifeng LIU ; Zhiyang LI ; Suhua QI ; Mingzhen ZHANG ; Jianjian ZHENG ; Jiuyao ZHOU ; Lei ZHENG ; Kewei ZHAO
Chinese Herbal Medicines 2024;16(1):3-12
To promote the development of extracellular vesicles of herbal medicine especially the establishment of standardization, led by the National Expert Committee on Research and Application of Chinese Herbal Vesicles, research experts in the field of herbal medicine and extracellular vesicles were invited nationwide with the support of the Expert Committee on Research and Application of Chinese Herbal Vesicles, Professional Committee on Extracellular Vesicle Research and Application, Chinese Society of Research Hospitals and the Guangdong Engineering Research Center of Chinese Herbal Vesicles. Based on the collation of relevant literature, we have adopted the Delphi method, the consensus meeting method combined with the nominal group method to form a discussion draft of "Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023)". The first draft was discussed in online and offline meetings on October 12, 14, November 2, 2022 and April and May 2023 on the current status of research, nomenclature, isolation methods, quality standards and research applications of extracellular vesicles of Chinese herbal medicines, and 13 consensus opinions were finally formed. At the Third Academic Conference on Research and Application of Chinese Herbal Vesicles, held on May 26, 2023, Kewei Zhao, convenor of the consensus, presented and read the consensus to the experts of the Expert Committee on Research and Application of Chinese Herbal Vesicles. The consensus highlights the characteristics and advantages of Chinese medicine, inherits the essence, and keeps the righteousness and innovation, aiming to provide a reference for colleagues engaged in research and application of Chinese herbal vesicles at home and abroad, decode the mystery behind Chinese herbal vesicles together, establish a safe, effective and controllable accurate Chinese herbal vesicle prevention and treatment system, and build a bridge for Chinese medicine to the world.
6.Effect of cognitively engaging physical activity on developing executive function of children and adolescents: a systematic review based on ICF
Jianing WEN ; Qiuyan JIN ; Qi ZHANG ; Jie LI ; Qi SI
Chinese Journal of Rehabilitation Theory and Practice 2024;30(1):44-53
ObjectiveTo systematically review the intervention effect of cognitively engaging physical activity (CEPA) on executive function of children and adolescents. MethodsLiteratures in Chinese and English were retrieved from databases of Web of Science, PubMed, Medline, EBSCO and CNKI, from the establishment to November 30th, 2023. According to the inclusion and exclusion criteria, the literatures that met the requirements were screened, and their quality was evaluated and systematically reviewed. ResultsA total of 15 literatures were included, published between 2014 and 2023, from eight countries, involving 1 806 subjects aged four to 16 years. The average score of PEDro scale was 6.6. The intensity of the CEPA intervention ranged from 64% to 93% HRmax, the duration of a single session ranged from ten to 60 minutes, and the frequency of the intervention was two to five sessions a week, for four to 24 weeks. Specific forms of CEPA included football, basketball and floorball combined with cognitive tasks; running, jumping, squatting, sitting, spinning and balancing combined with cognitive tasks; and exergaming combined with cognitive tasks. Eleven researches showed positive effects of CEPA intervention on at least one component of executive function. However, six of the seven researches involving working memory failed to verify the positive effects. Twelve researches compared the intervention effects of CEPA and rutine exercise or regular physical education classes, and nine researches found that CEPA was more effective on executive function. ConclusionThe CEPA is effective on the executive function of children and adolescents, specifically on cognitive flexibility; it shows inconsistent effects on inhibitory control, and its effect on working memory has not been verified. The intervention types of CEPA are divided into ball games combined with cognitive tasks, basic motor skills training combined with cognitive tasks, and exergaming combined with cognitive tasks.
7.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
8.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
9.Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Quan GAO ; Lin LI ; Qi-Man ZHANG ; Qin-Song SHENG ; Ji-Liang ZHANG ; Li-Jun JIN ; Rui-Yan SHANG
Chinese journal of integrative medicine 2024;30(1):25-33
OBJECTIVE:
To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:
Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:
The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION
Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation
;
Matrix Metalloproteinase 9
;
Molecular Docking Simulation
;
Cell Cycle
;
ErbB Receptors
;
Apoptosis
;
Colorectal Neoplasms/pathology*
;
Cell Line, Tumor
10.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of

Result Analysis
Print
Save
E-mail