1.The Role of NEAT1 in Bone and Cartilage Metabolism and Bone Diseases
Rui-Ming WEN ; Rui-Qi HUANG ; Yi-Xing CHANG ; Ke XU ; Xue-Jie YI
Progress in Biochemistry and Biophysics 2025;52(4):930-945
In the process of maintaining the steady state of bone tissue, the transcription network and signal pathway of the body play a vital role. These complex regulatory mechanisms need precise coordination to ensure the balance between bone formation and bone absorption. Once this balance is broken, it may lead to pathological changes of bone and cartilage, and then lead to various bone diseases. Therefore, it is of great significance to understand these regulatory mechanisms for the prevention and treatment of bone diseases. In recent years, with the deepening of research, more and more lncRNA has been found to be closely related to bone health. Among them, nuclear paraspeckle assembly transcript 1 (NEAT1), as an extremely abundant RNA molecule in mammalian nuclei, has attracted extensive attention. NEAT1 is mainly transcribed from a specific site in human chromosome 11 by RNA polymerase II (RNaseP), which can form two different subtypes NEAT1_1 and NEAT1_2. These two subtypes are different in intracellular distribution and function, but they participate in many biological processes together. Studies have shown that NEAT1 plays a specific role in the process of cell growth and stress response. For example, it can regulate the development of osteoblasts (OB), osteoclasts (OC) and chondrocytes by balancing the differentiation of bone marrow mesenchymal stem cells (BMSCs), thus maintaining the steady state of bone metabolism. This discovery reveals the important role of NEAT1 in bone development and remodeling. In addition, NEAT1 is closely related to a variety of bone diseases. In patients with bone diseases such as osteoporosis (OP), osteoarthritis (OA) and osteosarcoma (OS), the expression level of NEAT1 is different. These differential expressions may be closely related to the pathogenesis and progression of bone diseases. By regulating the level of NEAT1, it can affect a variety of signal transduction pathways, and then affect the development of bone diseases. For example, some studies show that by regulating the expression level of NEAT1, the activity of osteoclasts can be inhibited, and the proliferation and differentiation of osteoblasts can be promoted, thus improving the symptoms of osteoporosis. It is worth noting that NEAT1 can also be used as a key sensor for the prevention and treatment of bone diseases. When exercising or receiving some natural products, the expression level of NEAT1 will change, thus reflecting the response of bones to external stimuli. This feature makes NEAT1 an important target for studying the prevention and treatment strategies of bone diseases. However, although the role of NEAT1 in bone biology and bone diseases has been initially recognized, its specific mechanism and regulatory relationship are still controversial. For example, the expression level, mode of action and interaction with other molecules of NEAT1 in different bone diseases still need further in-depth study. This paper reviews the role of NEAT1 in maintaining bone and cartilage metabolism, and discusses its expression and function in various bone diseases. By combing the existing research results and controversial points, this paper aims to provide new perspectives and ideas for the prevention and treatment of bone diseases, and provide useful reference and enlightenment for future research.
2.Progress in the application of poloxamer in new preparation technology
Xue QI ; Yi CHENG ; Nan LIU ; Zengming WANG ; Hui ZHANG ; Aiping ZHENG ; Dongzhou KANG
China Pharmacy 2025;36(5):630-635
Poloxamer, as a non-ionic surfactant, exhibits a unique triblock [polyethylene oxide-poly (propylene oxide)-polyethylene oxide] structure, which endows it with broad application potential in various fields, including solid dispersion technology, nanotechnology, gel technology, biologics, gene engineering and 3D printing. As a carrier, it enhances the solubility and bioavailability of poorly soluble drugs. In the field of nanotechnology, it serves as a stabilizer etc., enriching preparation methods. In gel technology, its self-assembly behavior and thermosensitive properties facilitate controlled drug release. In biologics, it improves targeting efficiency and reduces side effects. In gene engineering, it enhances delivery efficiency and expression levels. In 3D printing, it provides novel strategies for precise drug release control and the production of high-quality biological products. As a versatile material, poloxamer holds promising prospects in the pharmaceutical field.
3.Research progress on flexible sensors in oral health monitoring
HUANG Jingwen ; HAN Shuang ; ZHENG Yi ; MA Ning
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(7):612-618
Oral health is closely related to facial aesthetics, mastication, pronunciation, and systemic diseases. Flexible sensors can improve current deficiencies in clinical diagnosis and treatment through oral health monitoring. This paper reviews the research on and application of flexible sensors in oral health monitoring in recent years, providing a reference for the further development of flexible sensors in the oral field. The structural basis of flexible sensors includes a flexible substrate, stretchable electrodes, and an active layer, and each part is designed through material selection to adapt to the oral environment. The sensing mechanisms of sensors involve electricity, optics, electrochemistry, and immunology, among which electro-chemical, biological, and optical sensors are particularly prominent in the oral field. The monitored signals include physical signals such as orthodontic force, bite force, respiratory humidity, and implant temperature; chemical signals such as saliva metabolites and oral gases; and biological signals such as periodontal disease and oral cancer markers. At present, flexible sensors still face many challenges in this special oral environment. Future research directions include improving the biocompatibility, moisture resistance, and flexible fitting ability of sensors in the oral cavity; using temperature-insensitive materials and protective films to improve stability; and introducing artificial receptors and sensor arrays to improve factors such as selectivity. In addition, multi-disciplinary cooperation is crucial for breaking through current bottlenecks and achieving more accurate disease diagnosis and health monitoring. In the field of stomatology, finding specific biomarkers related to corresponding oral diseases is the key to sensor health monitoring. Through these efforts, flexible sensors are expected to gain more extensive applications in the field of oral health monitoring.
4. Mechanism of action of formononetin in alleviating allergic asthma through DRP1-NLRP3 signaling pathway
Mu CHEN ; Qiao-Yun BAI ; Yi-Lan SONG ; Jiao CHEN ; Yong-De JIN ; Guang-Hai YAN ; Jiao CHEN ; Yong-De JIN ; Qiao-Yun BAI ; Yi-Lan SONG ; Guang-Hai YAN
Chinese Pharmacological Bulletin 2024;40(3):529-536
Aim To investigate the mechanism by which formononetin (FN) inhibits mitochondrial dynamic-related protein 1 (DRP1) -NLRP3 axis via intervening the generation of ROS to reduce allergic airway inflammation. Methods In order to establish allergic asthma mouse model, 50 BALB/c mice aged 8 weeks were divided into the control group, model group, FN treatment group and dexamethasone group after ovalbumin (OVA) induction. Airway inflammation and collagen deposition were detected by HampE and Masson staining. Th2 cytokines and superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA, ROS in BEAS-2B cells was assessed by DCFH-DA staining, DRP1 expression in lung tissue and BEAS-2B cells was detected by immunohistochemistry and immunofluorescence, and the DRP1-NLRP3 pathway was analyzed by immunoblotting. Results FN treatment could effectively ameliorate the symptoms of asthmatic mouse model, including reducing eosinophil accumulation, airway collagen deposition, decreasing Th2 cytokine and IgE levels, reducing ROS and MDA production, increasing SOD and CAT activities, and regulating DRP1-NLRP3 pathway-related protein expression, thereby relieving inflammation. Conclusion FN ameliorates airway inflammation in asthma by regulating DRP1-NLRP3 pathway.
5.Evaluation of the activity of sturgeon cartilage peptides and preparation of ointments
Peng LEI ; Kai-chao SONG ; Zheng-wen XIE ; Yi-fan QI ; Yu-jia ZHANG ; Wen-sheng ZHENG
Acta Pharmaceutica Sinica 2024;59(7):2135-2142
Sturgeon cartilage has a wide range of applications as it is rich in biologically active substances such as chondroitin sulphate and protein. In this study, the safety evaluation of sturgeon cartilage peptide in NIH/3T3 and C2C12 cells was conducted, and the results showed that sturgeon cartilage peptide did not induce apoptosis and necrosis in NIH/3T3 and C2C12 cells compared to the blank control, which provides an
6.AZD1775 and anti-PD-1 antibody synergistically sensitize hepatoma to radiotherapy
Yichun YIN ; Jian WANG ; Junxuan YI ; Kaiyue ZHANG ; Zimeng YIN ; Shunzi JIN ; Baisong ZHENG
Chinese Medical Journal 2024;137(2):222-231
Background::Radiation (IR)-induced DNA damage triggers cell cycle arrest and has a suppressive effect on the tumor microenvironment (TME). Wee1, a cell cycle regulator, can eliminate G2/M arrest by phosphorylating cyclin-dependent kinase 1 (CDK1). Meanwhile, programed death-1/programed death ligand-1 (PD-1/PDL-1) blockade is closely related to TME. This study aims to investigate the effects and mechanisms of Wee1 inhibitor AZD1775 and anti-PD-1 antibody (anti-PD-1 Ab) on radiosensitization of hepatoma.Methods::The anti-tumor activity of AZD1775 and IR was determined by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) assay on human and mouse hepatoma cells HepG2, Hepa1-6, and H22. The anti-hepatoma mechanism of AZD1775 and IR revealed by flow cytometry and Western blot in vitro. A hepatoma subcutaneous xenograft mice model was constructed on Balb/c mice, which were divided into control group, IR group, AZD1775 group, IR + AZD1775 group, IR + anti-PD-1 Ab group, and the IR + AZD1775 + anti-PD-1 Ab group. Cytotoxic CD8 + T cells in TME were analyzed by flow cytometry. Results::Combining IR with AZD1775 synergistically reduced the viability of hepatoma cells in vitro. AZD1775 exhibited antitumor effects by decreasing CDK1 phosphorylation to reverse the IR-induced G2/M arrest and increasing IR-induced DNA damage. AZD1775 treatment also reduced the proportion of PD-1 +/CD8 + T cells in the spleen of hepatoma subcutaneous xenograft mice. Further studies revealed that AZD1775 and anti-PD-1 Ab could enhance the radiosensitivity of hepatoma by enhancing the levels of interferon γ (IFNγ) + or Ki67 + CD8 T cells and decreasing the levels of CD8 + Tregs cells in the tumor and spleen of the hepatoma mice model, indicating that the improvement of TME was manifested by increasing the cytotoxic factor IFNγ expression, enhancing CD8 + T cells proliferation, and weakening CD8 + T cells depletion. Conclusions::This work suggests that AZD1775 and anti-PD-1 Ab synergistically sensitize hepatoma to radiotherapy by enhancing IR-induced DNA damage and improving cytotoxic CD8 + T cells in TME.
7.Research and application of exosomes in the diagnosis and treatment of ischemic stroke
Wenjing YIN ; Zhenni GUO ; Yi YANG
Journal of Apoplexy and Nervous Diseases 2024;41(1):3-6
Ischemic stroke (IS) is the most common type of stroke that can lead to severe neurological dysfunction while effective diagnostic and therapeutic methods are currently limited. Exosomes are natural vesicles that can play a key role in intercellular communication by delivering proteins, lipids, and nucleic acids. Notably,IS could cause changes in the level and content of exosome, which can serve as a potential biomarker to assist the diagnosis and treatment of IS. This article reviews the potential diagnostic value of exosomes,discusses their repair effects, and explores the potential application as drug carriers in IS. We also provide a concise summary of the current clinical research status based on exosomes.
Exosomes
;
Diagnosis
8.Advances in revision surgery after primary total hip arthroplasty for Crowe type Ⅳ developmental dysplasia of the hip.
Yi LIU ; Shuqiang LI ; Qisheng CHENG ; Jie MU
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(12):1548-1555
OBJECTIVE:
To review research advances of revision surgery after primary total hip arthroplasty (THA) for patients with Crowe type Ⅳ developmental dysplasia of the hip (DDH).
METHODS:
The recent literature on revision surgery after primary THA in patients with Crowe type Ⅳ DDH was reviewed. The reasons for revision surgery were analyzed and the difficulties of revision surgery, the management methods, and the related prosthesis choices were summarized.
RESULTS:
Patients with Crowe type Ⅳ DDH have small anteroposterior diameter of the acetabulum, large variation in acetabular and femoral anteversion angles, severe soft tissue contractures, which make both THA and revision surgery more difficult. There are many reasons for patients undergoing revision surgery after primary THA, mainly due to aseptic loosening of the prosthesis. Therefore, it is necessary to restore anatomical structures in primary THA, as much as possible and reduce the generation of wear particles to avoid postoperative loosening of the prosthesis. Due to the anatomical characteristics of Crowe type Ⅳ DDH, the patients have acetabular and femoral bone defects, and the repair and reconstruction of bone defects become the key to revision surgery. The acetabular side is usually reconstructed with the appropriate acetabular cup or combined metal block, Cage, or custom component depending on the extent of the bone defect, while the femoral side is preferred to the S-ROM prosthesis. In addition, the prosthetic interface should be ceramic-ceramic or ceramic-highly cross-linked polyethylene wherever possible.
CONCLUSION
The reasons leading to revision surgery after primary THA in patients with Crowe type Ⅳ DDH and the surgical difficulties have been clarified, and a large number of clinical studies have proposed corresponding revision modalities based on which good early- and mid-term outcomes have been obtained, but further follow-up is needed to clarify the long-term outcomes. With technological advances and the development of new materials, personalized prostheses for these patients are expected to become a reality.
Humans
;
Arthroplasty, Replacement, Hip/methods*
;
Hip Prosthesis
;
Hip Dislocation, Congenital/surgery*
;
Reoperation
;
Developmental Dysplasia of the Hip/surgery*
;
Acetabulum/surgery*
;
Retrospective Studies
;
Treatment Outcome
9. Effects of overexpression of IncRNA AC079466.1 on apoptosis of NSCLC cells through endoplasmic reticulum stress signaling pathway
Meng-Lin FENG ; Xin-Yi WEI ; Ping WANG ; Leng-Xin DUAN ; Nan-Ya WANG
Chinese Pharmacological Bulletin 2023;39(9):1689-1695
Aim To investigate the expression of IncRNA AC079466. 1 in non-small cell lung cancer (NSCLC) tissues and cells, and the effect of its overexpression on the proliferation, apoptosis, migration and invasion of A549 and H1299 cells. Methods Cancer tissues and corresponding adjacent tissues from 20 NSCLC patients were collected, and the expression of IncRNA AC079466. 1 in tissue and cells was detected by qRT-PCR. AC079466. 1 group was transfected with overexpression plasmid, NC group was transfected with empty plasmid, and no transfection was used in the Blank group. MTT, flow cytometry and Transwell were used to detect the effects of IncRNA AC079466. 1 overexpression on the viability, apoptosis, migration and invasion of A549 and HI299 cells. Western blot was used to detect the effect of overexpression of IncRNA AC079466. 1 on the expression of endoplasmic reticulum stress-related factors GRP78, PERK, eIF2a, ATF4, CHOP, Bax and caspase-3. Results Compared with adjacent tissues, the expression of IncRNA AC079466. 1 in cancer tissues significantly decreased. Compared with HBE cells, the expression of IncRNA AC079466. 1 significantly decreased in A549 and H1299 cells. Compared with the Blank group and NC group, the viability, migration and invasion abilities of A549 and H1299 cells in AC079466. 1 group all markedly decreased, the apoptosis rate apparently increased, and the expressions of endoplasmic reticulum stress-related factors GRP78, p-PERK, eIF2a, ATF4, CHOP, Bax and caspase-3 were significantly up-regulated. Conclusion The overexpression of IncRNA AC079466. 1 significantly inhibits the viability, migration and invasion of A549 and HI299 cells, and promotes cell apoptosis. The mechanism may be related to the promotion of endoplasmic reticulum stress-mediated cell apoptosis.
10. JTE-013 mediates RhoA/ROCKl/Drpl signaling axis regulating mitochondrial damage and apoptosis to alleviate allergic rhinitis
Jiao CHEN ; Long-Zhu DAI ; Mu CHEN ; Yi-Lan SONG ; Guang-Hai YAN ; Chong-Yang WANG ; Yong-De JIN ; Jiao CHEN ; Mu CHEN ; Yong-De JIN ; Long-Zhu DAI ; Yi-Lan SONG ; Guang-Hai YAN ; Chong-Yang WANG
Chinese Pharmacological Bulletin 2023;39(9):1638-1647
Aim To investigate the protective effect and mechanism of JTE-013 on allergic rhinitis (AR) by regulating mitochondrial injury and apoptosis through RhoA/ROCKl/Drpl pathway. Methods AR model was established by ovalbumin (OVA) in mice. Nasal tissue sections were then stained with HE, TUNEL and DHE. Western blot assay. In vitro, human nasal epithelial cells (HNEpCs) were stimulated with human recombinant interleukin-13 (IL-13), and the effects of JTE-013 and Y27632-related protein expression were detected by Western blot. Immunofluorescence was used to observe the effects of JTE-013 and Y 27632 on total ROS, mitochondrial membrane potential and mitochondrial ROS generation, Drpl translocation and Cyt-c expression in cells. Results JTE-013 reduced the frequency of nose rubbing and sneezing, reduced nasal mucosal thickening and decreased eosinophil infiltration in AR mice. TUNEL and DHE staining results suggested that JTE-013 could inhibit apoptosis and reduce ROS expression in mouse nasal epithelial cells. Western blot showed that both JTE-013 and Y 27632 could significantly reduce RhoA, ROCK1, Drpl and p-Drpl(616), inhibit the expression of apoptotic proteins Bax, cleaved-caspase-3, Cyt-c, cleavedcaspase-9 and up-regulate the expression of p-Drpl (637) and Bcl-2. Immunofluorescence showed that inhibitors of JTE-013 or ROCK1 almost blocked IL-13mediated increase in ROS and mtROS production, inhibited decrease in mitochondrial membrane potential, and blocked Cyt-c expression and Drpl translocation in nasal mucosal epithelial cells. Conclusion JTE-013 can regulate the morphology and function of mitochondria by inhibiting RhoA/ROCKl/Drpl signaling axis, thereby alleviating nasal epithelial cell inflammation in mice with allergic rhinitis.


Result Analysis
Print
Save
E-mail