1.Does Vertebral Cement Augmentation Reduce Postoperative Proximal Junction Complications in Spinal Deformity Corrective Surgery: A Systematic Review and Meta-analysis
Dong LI ; Xin SUN ; Jie LI ; Yanjie XU ; Yong QIU ; Zezhang ZHU ; Zhen LIU
Neurospine 2025;22(1):51-66
		                        		
		                        			 Objective:
		                        			To assess the effectiveness of vertebral cement augmentation (VCA) at upper instrumented vertebra (UIV) and UIV+1 in preventing proximal junction complications in correction surgery for adult spinal deformity patients. 
		                        		
		                        			Methods:
		                        			A literature search was conducted on Web of Science, PubMed, and Cochrane Library databases for comparative studies published before December 30th, 2024. Two reviewers independently screened eligible articles based on the inclusion and exclusion criteria, assessed study quality with Newcastle-Ottawa scale, and extracted data like study characteristics, surgical details, primary and secondary outcomes. Data analysis was performed using Review Manager 5.4 and Stata software. 
		                        		
		                        			Results:
		                        			Of all 513 papers screened, a meta-analysis was conducted on 7 articles, which included 333 cases in the VCA group and 827 cases in the control group. Patients in the VCA group had significantly older age and lower T score than patients in the control group. Although there was no statistically significant difference in the incidence of proximal junctional failure between the 2 groups, the results of the meta-analysis showed that the incidence of proximal junctional failure and the need for revision surgery were reduced by 36% and 71%, respectively, in the VCA group. One study reported 2 clinically silent pulmonary cement embolism and 1 patient requiring surgical decompression for cement leak into the spinal canal. 
		                        		
		                        			Conclusion
		                        			This meta-analysis supported the use of VCA in corrective surgery for spinal deformities patients, especially in patients with advanced age and osteoporosis. 
		                        		
		                        		
		                        		
		                        	
2.Does Vertebral Cement Augmentation Reduce Postoperative Proximal Junction Complications in Spinal Deformity Corrective Surgery: A Systematic Review and Meta-analysis
Dong LI ; Xin SUN ; Jie LI ; Yanjie XU ; Yong QIU ; Zezhang ZHU ; Zhen LIU
Neurospine 2025;22(1):51-66
		                        		
		                        			 Objective:
		                        			To assess the effectiveness of vertebral cement augmentation (VCA) at upper instrumented vertebra (UIV) and UIV+1 in preventing proximal junction complications in correction surgery for adult spinal deformity patients. 
		                        		
		                        			Methods:
		                        			A literature search was conducted on Web of Science, PubMed, and Cochrane Library databases for comparative studies published before December 30th, 2024. Two reviewers independently screened eligible articles based on the inclusion and exclusion criteria, assessed study quality with Newcastle-Ottawa scale, and extracted data like study characteristics, surgical details, primary and secondary outcomes. Data analysis was performed using Review Manager 5.4 and Stata software. 
		                        		
		                        			Results:
		                        			Of all 513 papers screened, a meta-analysis was conducted on 7 articles, which included 333 cases in the VCA group and 827 cases in the control group. Patients in the VCA group had significantly older age and lower T score than patients in the control group. Although there was no statistically significant difference in the incidence of proximal junctional failure between the 2 groups, the results of the meta-analysis showed that the incidence of proximal junctional failure and the need for revision surgery were reduced by 36% and 71%, respectively, in the VCA group. One study reported 2 clinically silent pulmonary cement embolism and 1 patient requiring surgical decompression for cement leak into the spinal canal. 
		                        		
		                        			Conclusion
		                        			This meta-analysis supported the use of VCA in corrective surgery for spinal deformities patients, especially in patients with advanced age and osteoporosis. 
		                        		
		                        		
		                        		
		                        	
3.Material basis and action mechanism of drug-containing serum of Modified Erxian Pill inhibiting macrophage pyroptosis
Siyuan LI ; Yuru WANG ; Ye XU ; Di GUO ; Nan NAN ; Yang LIU ; Jie ZHAO ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(19):4029-4037
		                        		
		                        			
		                        			BACKGROUND:Our previous study found that Modified Erxian Pill could alleviate inflammation in collagen-induced arthritis rats,but its mechanism needs to be further verified. OBJECTIVE:To analyze the components absorbed in the blood of Modified Erxian Pill,and observe the effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages. METHODS:(1)Analysis of components absorbed in the blood of Modified Erxian Pill:Ultra-high performance liquid chromatography-high resolution mass spectrometry was used to detect and identify Modified Erxian Pill and its components absorbed in the blood.(2)Effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages:Molecular docking technology was used to initially verify the sesquiterpenoids and NLRP3 in components absorbed in the blood of Modified Erxian Pill.J774A.1 macrophages were randomly divided into blank control group,lipopolysaccharide+adenosine triphosphate group,and lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill with low(2.5%),medium(5%),and high(10%)dose groups.The release of lactate dehydrogenase in the cell supernatant of each group was detected according to the kit instructions.The levels of interleukin-1β and interleukin-18 in cell supernatant were detected in each group by ELISA.The cell membrane damage was detected by Hoechst/PI staining.The expression levels of NLRP3,Caspase-1,GSDMD,and GSDMD-N protein in the cells of each group were detected by western blot assay. RESULTS AND CONCLUSION:(1)A total of 32 active components of Modified Erxian Pill were identified,and 21 components entered the blood.The main components into blood included a variety of sesquiterpenoids.(2)Molecular docking results showed that 3-O-Acetyl-13-deoxyphomenone,Incensol oxide,Atractylenolide III,Rupestonic acid,and 3,7-Dihydroxy-9,11-eremophiladien-8-one had good binding activity with NLRP3.(3)Compared with the blank control group,lactate dehydrogenase activity and the expression levels of interleukin-1β and interleukin-18 were significantly increased in cell supernatant of lipopolysaccharide+adenosine triphosphate group(P<0.001).Hoechst/PI staining showed that the number of PI-positive cells was significantly increased.After the intervention of lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group,all of them showed different degrees of reduction.(4)Compared with the blank control group,NLRP3,Caspase-1,GSDMD,and GSDMD-N protein expression levels were significantly increased in the lipopolysaccharide+adenosine triphosphate group(P<0.05).Compared with lipopolysaccharide+adenosine triphosphate group,the protein expressions of NLRP3,Caspase-1,GSDMD,and GSDMD-N were significantly decreased in the lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group(P<0.05),and had a certain dose dependence.These findings verify that the drug-containing serum of Modified Erxian Pill may inhibit the pyroptosis of J774A.1 macrophages by regulating the NLRP3/Caspase-1/GSDMD pathway.
		                        		
		                        		
		                        		
		                        	
4.Cyclin F Expression in Clear Cell Renal Cell Carcinoma and Its Effect on Biological Behavior of Renal Carcinoma Cell Lines
Min SU ; Yan WANG ; Jie HUA ; Tianyun WANG ; Shengnan XU ; Xiang KUI
Cancer Research on Prevention and Treatment 2025;52(6):474-480
		                        		
		                        			
		                        			Objective To investigate the expression of Cyclin F in clear cell renal cell carcinoma (ccRCC), its clinicopathological characteristics, and its effect on the biological behavior of renal cancer cell lines Methods RT-qPCR and Western blot were used to detect the mRNA and protein expression of Cyclin F in fresh ccRCC specimens. Immunohistochemistry assay was performed to detect the expression of Cyclin F protein in 80 paraffin samples. CCK-8 assay, scratch assay, and flow cytometry were conducted to determine the effects of Cyclin F overexpression on the proliferation, migration, and apoptosis of renal cancer cell lines. Results The expression of Cyclin F in cancer tissues was higher than that in adjacent tissues at the mRNA level (P<
		                        		
		                        	
5.Clinicopathological Characteristics of HER2-Positive Breast Cancer Patients with BRCA1/2 Pathogenic Variants and Their Response to Neoadjuvant Targeted Therapy
Xingyu LIAO ; Huimin LIU ; Jie SUN ; Li HU ; Juan ZHANG ; Lu YAO ; Ye XU ; Yuntao XIE
Cancer Research on Prevention and Treatment 2025;52(6):491-495
		                        		
		                        			
		                        			Objective To analyze the proportion and clinicopathological characteristics of HER2-positive breast cancer patients with BRCA1/2 pathogenic variants, and their response to neoadjuvant anti-HER2 targeted therapy. Methods The clinicopathological data of 531 breast cancer patients with germline BRCA1/2 pathogenic variants (201 with BRCA1 variants and 330 with BRCA2 variants) were analyzed. Results Among the 201 BRCA1 and 330 BRCA2 variants, 17 (8.5%) and 42 (12.7%) HER2-positive breast cancer cases were identified, respectively, accounting for 11.1% of all BRCA1/2-mutated breast cancers. Compared with BRCA1/2-mutated HR-positive/HER2-negative patients, HER2-positive patients did not present any significant differences in clinicopathological features; however, compared with triple-negative breast cancer patients, HER2-positive patients had a later onset age and lower tumor grade. Among the 17 patients who received neoadjuvant anti-HER2 targeted therapy, 10 cases achieved pCR (58.8%), whereas 7 cases did not (41.2%). Conclusion HER2-positive breast cancer accounts for more than 10% of BRCA1/2-mutated patients. Approximately 40% of these patients fail to achieve pCR after neoadjuvant targeted therapy. This phenomenon highlights the possibility of combining anti-HER2 targeted agents with poly (adenosine diphosphate-ribose) polymerase inhibitors.
		                        		
		                        		
		                        		
		                        	
6.Plasma miRNA testing in the differential diagnosis of very early-stage hepatocellular carcinoma: a multicenter real-world study
Jie HU ; Ying XU ; Ao HUANG ; Lei YU ; Zheng WANG ; Xiaoying WANG ; Xinrong YANG ; Zhenbin DING ; Qinghai YE ; Yinghong SHI ; Shuangjian QIU ; Huichuan SUN ; Qiang GAO ; Jia FAN ; Jian ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):350-354
		                        		
		                        			
		                        			Objective To explore the application of plasma 7 microRNA (miR7) testing in the differential diagnosis of very early-stage hepatocellular carcinoma (HCC). Methods This study is a multicenter real-world study. Patients with single hepatic lesion (maximum diameter≤2 cm) who underwent plasma miR7 testing at Zhongshan Hospital, Fudan University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Anhui Provincial Hospital, and Peking University People’s Hospital between January 2019 and December 2024 were retrospectively enrolled. Patients were divided into very early-stage HCC group and non-HCC group, and the clinical pathological characteristics of the two groups were compared. The value of plasma miR7 levels, alpha-fetoprotein (AFP), and des-gamma-carboxy prothrombin (DCP) in the differential diagnosis of very early-stage HCC was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). In patients with both negative AFP and DCP (AFP<20 ng/mL, DCP<40 mAU/mL), the diagnostic value of plasma miR7 for very early-stage HCC was analyzed. Results A total of 64 528 patients from 4 hospitals underwent miR7 testing, and 1 682 were finally included, of which 1 073 were diagnosed with very early-stage HCC and 609 were diagnosed with non-HCC. The positive rate of miR7 in HCC patients was significantly higher than that in non-HCC patients (67.9% vs 24.3%, P<0.001). ROC curves showed that the AUCs for miR7, AFP, and DCP in distinguishing HCC patients from the non-HCC individuals were 0.718, 0.682, and 0.642, respectively. The sensitivities were 67.85%, 43.71%, and 44.45%, and the specificities were 75.70%, 92.78%, and 83.91%, respectively. The pairwise comparison of AUCs showed that the diagnostic efficacy of plasma miR7 detection was significantly better than that of AFP or DCP (P<0.05). Although its specificity was slightly lower than AFP and DCP, the sensitivity was significantly higher. Among patients negative for both AFP and DCP, miR7 maintained an AUC of 0.728 for diagnosing very early-stage HCC, with 67.82% sensitivity and 77.73% specificity. Conclusions Plasma miR7 testing is a potential molecular marker with high sensitivity and specificity for the differential diagnosis of small hepatic nodules. In patients with very early-stage HCC lacking effective molecular markers (negative for both AFP and DCP), miR7 can serve as a novel and effective molecular marker to assist diagnosis.
		                        		
		                        		
		                        		
		                        	
7.An analysis of 6-month follow-up efficacy of low-intensity extracorporeal shock wave therapy for refractory prostate-pelvic syndrome
Xiao XU ; Guizhong LI ; Xiang DAI ; Jie WANG
Journal of Modern Urology 2025;30(2):157-160
		                        		
		                        			
		                        			Objective: To evaluate the long-term efficacy and safety of low-intensity extracorporeal shock wave therapy (Li-ESWT) for refractory prostate-pelvic syndrome (PPS). Methods: Clinical data of 173 patients with refractory PPS undergoing Li-ESWT at our hospital during Jan.2020 and Jan.2023 were retrospectively analyzed.All patients received weekly treatment for 8 consecutive weeks.Changes in the National Institutes of Health chronic prostatitis symptom index (NIH-CPSI),international prostate symptom score (IPSS),visual analog scale (VAS),and international index of erectile function-5 (IIEF-5) were compared before treatment,immediately,1,3,and 6 months after treatment. Results: A total of 142 patients (82.1%) completed all follow-ups.Compared to baseline data,there was a statistically significant improvement in NIH-CPSI,IPSS,VAS,and IIEF-5 scores immediately after treatment and 1,3,and 6 months after treatment (P<0.01).No significant adverse reactions or complications were observed throughout the follow-up.At the time of treatment completion,115 patients (81.0%) had a decrease of ≥6 in NIH-CPSI; 99 patients (69.7%) had a decrease of ≥3 in IPSS; 121 patients (85.2%) had a decrease of ≥3 in VAS; 105 patients (73.9%) had an increase of ≥4 in IIEF-5.At the 6-month follow-up,patients who responded to treatment maintained satisfactory therapeutic effects. Conclusion: Li-ESWT can significantly improve clinical symptoms and quality of life for patients with refractory PPS,with therapeutic effects lasting at least 6 months.
		                        		
		                        		
		                        		
		                        	
8.Postoperative Stage-based Functional Protection Strategies for Lung Cancer Based on Theory of "Lungs Governing Qi"
Luchang CAO ; Guanghui ZHU ; Ruike GAO ; Manman XU ; Xiaoyu ZHU ; Wei HOU ; Ying ZHANG ; Jie LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):86-93
		                        		
		                        			
		                        			Lung cancer (LC) is a significant global public health issue, with both its incidence and mortality rates ranking among the highest worldwide. The age-standardized incidence and mortality rates are increasing annually, posing a serious threat to the life and health of LC patients. Radical surgical resection is the primary treatment for malignant lung tumors. However, postoperative multidimensional functional impairments, including respiratory, mucosal, and psychological functions, are common. These impairments not only reduce patients' quality of life and affect their treatment tolerance and duration, but also negatively correlate with prognosis, facilitating disease recurrence and metastasis. At present, postoperative functional dysfunction after LC surgery remains a key clinical challenge that urgently needs to be addressed. There is a lack of standardized and regulated postoperative rehabilitation treatment management and traditional Chinese medicine (TCM) differentiation and treatment strategies for LC. Focusing on the core underlying pathogenesis of "Qi sinking" after LC surgery, and guided by the classical TCM theory of "lungs governing Qi", this study, based on the core concept of the "five perspectives on treatment" theory, innovatively proposes the respiratory dysfunction as the core pathogenesis of "Qi sinking in the chest" during the rapid rehabilitation phase, mucosal dysfunction as the core pathogenesis of "Yin deficiency and Qi sinking" during the postoperative adjuvant treatment phase, and the psychological dysfunction as the core pathogenesis of "Qi sinking with emotional constraint" during the consolidation phase. Accordingly, stage-specific dynamic functional protection strategies are constructed. In the rapid rehabilitation phase, the strategy emphasizes tonifying Qi and uplifting sinking Qi, with differentiation and treatment based on the principle of ''descending before ascending''. In the adjuvant treatment phase, the approach focuses on nourishing Yin and uplifting Qi, with prescription combinations that integrate unblocking and tonification. In the consolidation phase, the strategy aims to resolve constraint and uplift Qi, with clinical treatment emphasizing a combination of dynamic and static methods. At each stage of functional rehabilitation, clinical differentiation and treatment should support healthy Qi and eliminate pathogenic factors simultaneously. This study is the first to propose the concept of postoperative functional protection in TCM, offering a new approach for TCM differentiation and treatment in the full-cycle, stage-based, and dynamic protection of postoperative function in LC patients. It is expected to contribute to the construction and development of an integrated TCM-Western medicine comprehensive program for cancer prevention and treatment in China. 
		                        		
		                        		
		                        		
		                        	
9.A Hierarchical Strategy for Differentiation and Treatment of Recurrent Aphthous Oral Ulcers Related to Targeted Therapy for Lung Cancer Based on Yin Deficiency and Qi Collapse
Luchang CAO ; Guanghui ZHU ; Ruike GAO ; Manman XU ; Xiaoyu ZHU ; Ming LIN ; Ying ZHANG ; Jie LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):116-125
		                        		
		                        			
		                        			Tumor treatment-related adverse reactions are a major focus of clinical concern, among which recurrent aphthous oral ulcers (RAU) associated with targeted therapy for lung cancer (LC) are among the most painful and distressing for patients. Currently, modern medical interventions show limited efficacy, and there is an urgent need for more effective treatment strategies. This study differentiates RAU associated with targeted therapy for LC from chemotherapy-related and ordinary oral ulcers, elucidates the pathophysiological basis of such ulcers, and traces the theoretical origin of "Yin deficiency and Qi collapse". Based on the new system of "five perspectives on diagnosis and treatment" for tumor prevention and treatment, with a focus on the core and symptom perspectives and rooted in the traditional concept of "lung dominating Qi", we innovatively propose the concept of "medicine-induced ulcer" and are the first to introduce the theory of "Yin deficiency and Qi collapse" into the syndrome differentiation and treatment of RAU associated with targeted therapy for LC (i.e., medicine-induced ulcer). We propose that "Yin deficiency and Qi collapse" is the core pathogenesis of medicine-induced ulcers, in which the collapse of formless Qi is the key to their onset, while the deficiency and stasis of tangible Yin and blood constitute the root of recurrence. A hierarchical strategy for syndrome differentiation and treatment is established: first treating the collapse of formless Qi, then replenishing tangible deficiencies, and concurrently preventing recurrence. We emphasize that treatment should address both root and manifestation, with appropriate prioritization. In the acute phase, while relieving symptoms and promoting ulcer healing by nourishing Qi, uplifting collapse, and generating body fluids, attention should also be paid to nourishing spleen Yin, facilitating the circulation of nutritive Qi, and alleviating stasis to target the root pathogenesis and reduce recurrence. A verified case is presented to support this approach. This study enriches the theoretical framework and clinical methods of traditional Chinese medicine (TCM) in the treatment of RAU associated with targeted therapy for LC, promotes symptom management of treatment-related adverse reactions through integrated TCM and Western medicine, and provides theoretical support for the construction and development of a comprehensive differentiation and treatment system for lung cancer prevention, treatment, and rehabilitation. 
		                        		
		                        		
		                        		
		                        	
10.Prediction of Protein Thermodynamic Stability Based on Artificial Intelligence
Lin-Jie TAO ; Fan-Ding XU ; Yu GUO ; Jian-Gang LONG ; Zhuo-Yang LU
Progress in Biochemistry and Biophysics 2025;52(8):1972-1985
		                        		
		                        			
		                        			In recent years, the application of artificial intelligence (AI) in the field of biology has witnessed remarkable advancements. Among these, the most notable achievements have emerged in the domain of protein structure prediction and design, with AlphaFold and related innovations earning the 2024 Nobel Prize in Chemistry. These breakthroughs have transformed our ability to understand protein folding and molecular interactions, marking a pivotal milestone in computational biology. Looking ahead, it is foreseeable that the accurate prediction of various physicochemical properties of proteins—beyond static structure—will become the next critical frontier in this rapidly evolving field. One of the most important protein properties is thermodynamic stability, which refers to a protein’s ability to maintain its native conformation under physiological or stress conditions. Accurate prediction of protein stability, especially upon single-point mutations, plays a vital role in numerous scientific and industrial domains. These include understanding the molecular basis of disease, rational drug design, development of therapeutic proteins, design of more robust industrial enzymes, and engineering of biosensors. Consequently, the ability to reliably forecast the stability changes caused by mutations has broad and transformative implications across biomedical and biotechnological applications. Historically, protein stability was assessed via experimental methods such as differential scanning calorimetry (DSC) and circular dichroism (CD), which, while precise, are time-consuming and resource-intensive. This prompted the development of computational approaches, including empirical energy functions and physics-based simulations. However, these traditional models often fall short in capturing the complex, high-dimensional nature of protein conformational landscapes and mutational effects. Recent advances in machine learning (ML) have significantly improved predictive performance in this area. Early ML models used handcrafted features derived from sequence and structure, whereas modern deep learning models leverage massive datasets and learn representations directly from data. Deep neural networks (DNNs), graph neural networks (GNNs), and attention-based architectures such as transformers have shown particular promise. GNNs, in particular, excel at modeling spatial and topological relationships in molecular structures, making them well-suited for protein modeling tasks. Furthermore, attention mechanisms enable models to dynamically weigh the contribution of specific residues or regions, capturing long-range interactions and allosteric effects. Nevertheless, several key challenges remain. These include the imbalance and scarcity of high-quality experimental datasets, particularly for rare or functionally significant mutations, which can lead to biased or overfitted models. Additionally, the inherently dynamic nature of proteins—their conformational flexibility and context-dependent behavior—is difficult to encode in static structural representations. Current models often rely on a single structure or average conformation, which may overlook important aspects of stability modulation. Efforts are ongoing to incorporate multi-conformational ensembles, molecular dynamics simulations, and physics-informed learning frameworks into predictive models. This paper presents a comprehensive review of the evolution of protein thermodynamic stability prediction techniques, with emphasis on the recent progress enabled by machine learning. It highlights representative datasets, modeling strategies, evaluation benchmarks, and the integration of structural and biochemical features. The aim is to provide researchers with a structured and up-to-date reference, guiding the development of more robust, generalizable, and interpretable models for predicting protein stability changes upon mutation. As the field moves forward, the synergy between data-driven AI methods and domain-specific biological knowledge will be key to unlocking deeper understanding and broader applications of protein engineering. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail