1.Exploration of a new model for the construction of medical institution formulation platforms from the perspective of industry-university-research collaborative innovation theory
Kana LIN ; Anle SHEN ; Yejian WANG ; Yanqiong WANG ; Hao LI ; Yanfang GUO ; Youjun WANG ; Xinyan SUN
China Pharmacy 2026;37(2):137-141
OBJECTIVE To explore a model for constructing a platform for medical institution formulation and provide insights for promoting their development. METHODS By systematically reviewing the development status and challenges of medical institution preparations in China, and based on the theory of industry-university-research collaborative innovation, the organizational structure, collaborative processes, and safeguard mechanisms of the platform were designed. RESULTS & CONCLUSIONS Medical institution formulations in China mainly faced challenges such as weak research and development (R&D) capacity, uneven quality standards, and blocked transformation pathways. This study established a full-chain, whole- industry collaborative innovation network covering the government, medical institutions, universities/research institutes, pharmaceutical enterprises, and the market, forming a new “government-industry-university-research-application” five-in-one platform model for medical institution formulations. By establishing mechanisms such as multi-entity collaborative cooperation, full- chain intellectual property management, contribution-based benefit distribution, staged risk-sharing, and third-party evaluation, the model clarified the responsibilities and collaborative pathways of all parties. The new model highlights the whole-process transformation of clinical experience-based prescriptions, enabling precise alignment between clinical needs and technological R&D, as well as between preparation achievements and industrial transformation. While breaking down the barriers of traditional platform construction, it effectively achieves optimal resource allocation and complementary advantages, addresses problems emerging in the development of medical institution preparations, and provides reference value for the formulation of relevant systems.
2.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
3.Study on the in vivo effects of 5T magnetic resonance imaging on the dental pulp and periodontal ligament in young adults
QI Zhengnan ; CAO Yiting ; WANG Yiwei ; SONG Qingbo ; ZHANG Peirong ; SUN Shuntao ; WANG Dengbin ; TANG Zisheng
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):139-147
Objective:
To evaluate the performance of 5T magnetic resonance imaging (MRI) in visualizing dental pulp and periodontal ligament (PDL) tissues in vivo in the young adult population, thereby providing a basis for the application of high-field MRI technology in clinical oral examinations.
Methods:
The study was approved by the Ethics Committee of the hospital. A total of 15 healthy volunteers (413 permanent teeth altogether) were recruited and underwent full-mouth 5T MRI scans. Among them, six volunteers (168 permanent teeth) also received both 3T MRI and cone-beam computed tomography (CBCT) scans. Two dental specialists independently evaluated the imaging quality of the dental pulp and PDL on the images using a 5-point Likert scale and recorded the number of detectable root canals for each tooth. Inter-rater agreement was assessed using weighted kappa statistics and intraclass correlation coefficient (ICC). Non-parametric tests were employed to compare differences in imaging performance among different tissue structures, tooth positions, and imaging modalities.
Results:
5T MRI can achieve in vivo imaging for most dental pulp tissues and partial periodontal membrane structures. There was a high level of agreement between the two raters in their imaging scores for the dental pulp and PDL (dental pulp κ = 0.934, PDL κ = 0.737). The imaging scores for dental pulp were significantly higher than those for PDL (P < 0.001), and the scores for molar dental pulp were lower than those for premolars and anterior teeth. In the multimodal comparison involving six volunteers, the raters showed good consistency in scoring dental pulp and PDL imaging across 5T MRI, 3T MRI, and CBCT, as well as in root canal counts (5T MRI for dental pulp κ = 0.971, 3T MRI for dental pulp κ = 0.933, CBCT for dental pulp κ = 0.964; 5T MRI for PDL κ = 0.625, 3T MRI for PDL κ = 0.667, CBCT for PDL κ = 0.571; ICC for root canal counts all ≥ 0.990). The imaging scores for dental pulp and PDL using 5T MRI were significantly higher than those using 3T MRI (dental pulp: P < 0.001; PDL: P = 0.022), but there was no statistically significant difference in the detection rate of the number of root canals between the two (P > 0.05). Although the imaging scores for dental pulp and PDL as well as the detection rate of the number of root canals with 5T MRI were inferior to those with CBCT (dental pulp: P < 0.001; PDL: P = 0.02; number of root canals: P < 0.05), 5T MRI can truly achieve "direct imaging" of these two soft tissues.
Conclusion
5T MRI enables effective in vivo direct imaging of dental pulp and PDL tissues in the young adult population, indicating its potential clinical application value in the diagnosis and treatment of pulp and periodontal diseases.
4.Clinical application of basic anesthesia combined with local anesthesia in preoperative localization of multiple pulmonary nodules: A retrospective cohort study
Siyang JIAO ; Yungang SUN ; Qiang ZHANG ; Feng SHAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):175-179
Objective To evaluate the safety and efficacy of basic anesthesia combined with local anesthesia in the preoperative localization of multiple pulmonary nodules. Methods The clinical data of patients who underwent preoperative localization for multiple pulmonary nodules resection under single-port thoracoscopy in Nanjing Brain Hospital from July 2023 to September 2023 were extracted. They were divided into a group A and a group B according to the localization method. The patients in the group A were localized under local anesthesia, and the patients in the group B were localized with basic anesthesia combined with local anesthesia. The basic clinical characteristics, localization success rate, incidence of localization complications, localization time, and pain score of the two groups were compared and analyzed. Results Finally, we included 200 patients with 100 patients in each group. There were 49 males and 51 females at age of 25-77 (50.94±14.29) years in the group A. There are 45 males and 55 females at age of 24-78 (48.25±14.04) years in the group B. The incidence of localization complications (4% vs. 13%, P=0.04), localization time [(19.90±8.66) min vs. (15.23±5.98) min, P<0.01], and pain score[ (2.01±2.09) vs. (3.29±2.54), P<0.01] in the group B were significantly lower than those in the group A, and the differences were statistically significant. The localization success rate of the group B was significantly higher than that of the group A (98% vs. 92%, P=0.04), and the difference was statistically significant.Conclusion Mobile CT combined with basic anesthesia for preoperative localization of multiple pulmonary nodules is highly safe, has a high success rate, and provides high patient comfort, making it a valuable approach for clinical promotion.
5.Mechanism of Intervening with Diarrhea-predominant Irritable Bowel Syndrome in Rats with Spleen Deficiency by Xingpi Capsules Through Regulating 5-HT-RhoA/ROCK2 Pathway
Gang WANG ; Lingwen CUI ; Xiangning LIU ; Rongxin ZHU ; Mingyue HUANG ; Ying SUN ; Boyang JIAO ; Ran WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):60-69
ObjectiveTo investigate the efficacy of Xingpi capsules (XPC) in treating diarrhea-predominant irritable bowel syndrome (IBS-D) with spleen deficiency and elucidate its potential molecular mechanisms. MethodsA rat model of IBS-D with spleen deficiency was established by administering senna leaf in combination with restrained stress and swimming fatigue for 14 d. Ten specific pathogen free (SPF)-grade healthy rats were used as the normal control group. After successful modeling, SPF-grade rats were randomly divided into a model group, a pinaverium bromide group (1.5 mg·kg-1), and low- and high-dose XPC groups (0.135 and 0.54 g·kg-1), with 10 rats in each group. Rats in the normal control group and the model group were given distilled water by gavage, while the remaining groups were administered corresponding drug solutions by gavage once a day for 14 consecutive days. The rat body weights and fecal condition were observed every day, and the Bristol score was recorded. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of 5-hydroxytryptamine (5-HT) in serum and colon tissue. Transmission electron microscopy was used to observe the microvilli and tight junctions in the colon. The integrity of the colonic barrier, intestinal motility, and expression of related pathway proteins were evaluated by hematoxylin-eosin (HE) staining, immunohistochemistry, and Western blot. ResultsCompared with those in the normal control group, rats in the model group showed a significantly decreased body weight and increased diarrhea rate, diarrhea grade, and Bristol score (P<0.01). HE staining revealed incomplete colonic mucosa in the model group, with evident congestion and edema observed. Electron microscopy results indicated decreased density and integrity of the colonic barrier, shedding and disappearance of microvilli, and significant widening of tight junctions. The expression levels of colonic tight junction proteins Occludin and Claudin-5 were downregulated (P<0.01), and the levels of 5-HT in serum and colon tissue were elevated (P<0.01). The small intestine propulsion rate significantly increased (P<0.01), and the expression of contractile proteins Ras homolog family member A (RhoA) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) in colon and phosphorylation of myosin light chain (MLC20) were upregulated (P<0.01). Compared with the model group, the treatment groups showed alleviated diarrhea, diarrhea-associated symptoms, and pathological manifestations of colon tissue to varying degrees. Specifically, high-dose XPC exhibited effectively relieved diarrhea, promoted recovery of colonic mucosal structure, significantly reduced congestion and edema, upregulated expression of Occludin and Claudin-5 (P<0.01), decreased levels of 5-HT in serum and colon tissue (P<0.05,P<0.01), significantly slowed small intestine propulsion rate (P<0.01), and significantly downregulated expression of contractile proteins RhoA and ROCK2 in colon and phosphorylation of MLC20 (P<0.05,P<0.01). ConclusionXPC effectively alleviates symptoms of spleen deficiency and diarrhea and regulates the secretion of brain-gut peptide. The characteristics of XPC are mainly manifested in alleviating IBS-D with spleen deficiency from the aspects of protecting intestinal mucosa and inhibiting smooth muscle contraction, and the mechanism is closely related to the regulation of the 5-HT-RhoA/ROCK2 pathway expression.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Exploring Molecular Mechanism of Gypenoside L against Ovarian Cancer Based on Ferroptosis Pathway Mediated by Mature-tRNA-Asp-GTC/ATF3-LPCAT3
Jingxuan ZHU ; Jiao ZHAO ; Qun WANG ; Xiaofei SUN ; Jiaxin WANG ; Hongda ZHANG ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):107-117
ObjectiveTo investigate the role of mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in the ferroptosis phenotype of ovarian cancer (OC) cells and the regulatory mechanism of gypenoside L (Gyp-L) on mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in OC cells. MethodsThe proliferation of human ovarian adenocarcinoma OVCAR3 cells was detected by cell counting kit-8 (CCK-8) assay, and the half-maximal inhibitory concentration (IC50) values of cisplatin (DDP), Gyp-L, and DDP in the presence of Gyp-L were calculated to determine the intervention concentration for subsequent experiments. Cell cloning assay and scratch assay reflected the proliferation and migration ability of OVCAR3 cells. PANDORA-seq small RNA sequencing was used to detect the differentially expressed transfer RNA-derived small RNAs (tsRNAs) in the cells after Gyp-L intervention, and the corresponding target genes of the tsRNAs were found by the RNAhybrid software. Malondialdehyde (MDA), glutathione (GSH), and lipid peroxide (LPO) levels were measured by colorimetry or enzyme linked immunosorbent assay (ELISA) method, Fe2+ content by FerroOrange fluorescent probe, and reactive oxygen species (ROS) content by DCFH-DA fluorescent probe to reflect the occurrence of ferroptosis in OVCAR3 cells. OVCAR3 cells were divided into a control group, a 50 µmol·L-1 Gyp-L group, and a 100 µmol·L-1 Gyp-L group. Quantitative real-time polymerase chain reaction (PCR) was performed to detect the expression of mature-tRNA-Asp-GTC, mature-tRNA-Leu-CAA, mature-mt_tRNA-Tyr-GTA_5_end, mature-tRNA-Val-CAC, mature-mt_tRNA-Glu-TTC, pre-tRNA-Arg-TCT, mature-tRNA-Asn-GTT, hydroxymethylbilane synthase (HMBS), Wnt, β-catenin, glutathione peroxidase 4 (GPX4), Kelch-like ECH-associated protein 1 (KEAP1), nuclear factor erythroid 2-related factor 2 (Nrf2), activating transcription factor 3 (ATF3), cystine/glutamate antiporter xCT, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Western blot was performed to detect the expression of HMBS, Wnt, β-catenin, GPX4, KEAP1, Nrf2, ATF3, xCT, LPCAT3, and ALOX15 proteins. ResultsThe 50 µmol·L-1 Gyp-L, 100 µmol·L-1 Gyp-L, DDP, 50 µmol·L-1 Gyp-L+DDP, and 100 µmol·L-1 Gyp-L+DDP groups showed significantly inhibited proliferation and migration of OVCAR3 cells (P<0.05) and exacerbated cell ferroptosis as reflected by the increase in the content of ROS, MDA, LPO, and Fe2+, as well as a decrease in the content of GSH (P<0.05). Compared with the control group, Gyp-L effectively interfered with the expression of 25 tsRNAs in OVCAR3 cells (P<0.05, |log2Fc|>1). Pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/NRF2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/NRF2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 axial expression was significantly aberrant after Gyp-L intervention (P<0.05). ConclusionThe pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/Nrf2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling pathways are involved in OC development. Gyp-L inhibits OC development by activating OVCAR3 cell ferroptosis onset mainly through the mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling axes.
8.Molecular Mechanism of Treating Different Diseases with Same Treatment of Gypenoside L Affecting Oxidative Damage HUVEC and OVCAR-3 Through EGFR/STAT3/Glycolytic Pathway
Ying YANG ; Jiao ZHAO ; Xiaofei SUN ; Jiaxin WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):125-134
ObjectiveWith the epidermal growth factor receptor(EGFR)/Signal Transducers and Activators of Transcription(STAT3)/Hexokinase 2(HK2) signaling pathway in atherosclerosis (AS) and ovarian cancer (OC) as the entry point, this paper discusses the molecular mechanism of Gypenoside L (Gyp-L) treating AS and OC with different diseases, provides a new perspective and theoretical basis for TCM treating AS and OC with EGFR-STAT3-HK2 pathway, and enriches the scientific connotation of the theory of "cytoskeleton in the heart". MethodsCCK-8 was used to detect the proliferation of HUVEC and OVCAR-3 cells, in order to determine the intervention concentration for subsequent experiments. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. Western blot was used to detect the expression levels of relevant proteins. Furthermore, two cell models overexpressing EGFR were constructed and co treated with Gyp-L. HUVEC cells were divided into control, ox-LDL, OE-NC, OE-EGFR, OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. OVCAR-3 cells were divided into control, OE-NC, OE-EGFR , OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Western blot was used to detect the expression levels of EGFR-STAT3-HK2 pathway related proteins. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. ResultsGyp-L can significantly reduce the NO content of HUVEC and the pyruvate and LDH content of two cell lines (P<0.05); Inhibit the proliferation and migration ability of OVCAR-3 cells; Reduce the expression levels of EGFR/STAT3/HK2 pathway related proteins in HUVEC and OVCAR-3 cell lines (P<0.05), and inhibit the glycolysis pathway. ConclusionGyp-L can inhibit glycolysis in HUVEC and OVCAR-3 cells through the EGFR/STAT3/HK2 pathway,thereby suppressing the occurrence and development of AS and OC.
9.Exploring Molecular Mechanism of Gypenoside L against Ovarian Cancer Based on Ferroptosis Pathway Mediated by Mature-tRNA-Asp-GTC/ATF3-LPCAT3
Jingxuan ZHU ; Jiao ZHAO ; Qun WANG ; Xiaofei SUN ; Jiaxin WANG ; Hongda ZHANG ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):107-117
ObjectiveTo investigate the role of mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in the ferroptosis phenotype of ovarian cancer (OC) cells and the regulatory mechanism of gypenoside L (Gyp-L) on mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in OC cells. MethodsThe proliferation of human ovarian adenocarcinoma OVCAR3 cells was detected by cell counting kit-8 (CCK-8) assay, and the half-maximal inhibitory concentration (IC50) values of cisplatin (DDP), Gyp-L, and DDP in the presence of Gyp-L were calculated to determine the intervention concentration for subsequent experiments. Cell cloning assay and scratch assay reflected the proliferation and migration ability of OVCAR3 cells. PANDORA-seq small RNA sequencing was used to detect the differentially expressed transfer RNA-derived small RNAs (tsRNAs) in the cells after Gyp-L intervention, and the corresponding target genes of the tsRNAs were found by the RNAhybrid software. Malondialdehyde (MDA), glutathione (GSH), and lipid peroxide (LPO) levels were measured by colorimetry or enzyme linked immunosorbent assay (ELISA) method, Fe2+ content by FerroOrange fluorescent probe, and reactive oxygen species (ROS) content by DCFH-DA fluorescent probe to reflect the occurrence of ferroptosis in OVCAR3 cells. OVCAR3 cells were divided into a control group, a 50 µmol·L-1 Gyp-L group, and a 100 µmol·L-1 Gyp-L group. Quantitative real-time polymerase chain reaction (PCR) was performed to detect the expression of mature-tRNA-Asp-GTC, mature-tRNA-Leu-CAA, mature-mt_tRNA-Tyr-GTA_5_end, mature-tRNA-Val-CAC, mature-mt_tRNA-Glu-TTC, pre-tRNA-Arg-TCT, mature-tRNA-Asn-GTT, hydroxymethylbilane synthase (HMBS), Wnt, β-catenin, glutathione peroxidase 4 (GPX4), Kelch-like ECH-associated protein 1 (KEAP1), nuclear factor erythroid 2-related factor 2 (Nrf2), activating transcription factor 3 (ATF3), cystine/glutamate antiporter xCT, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Western blot was performed to detect the expression of HMBS, Wnt, β-catenin, GPX4, KEAP1, Nrf2, ATF3, xCT, LPCAT3, and ALOX15 proteins. ResultsThe 50 µmol·L-1 Gyp-L, 100 µmol·L-1 Gyp-L, DDP, 50 µmol·L-1 Gyp-L+DDP, and 100 µmol·L-1 Gyp-L+DDP groups showed significantly inhibited proliferation and migration of OVCAR3 cells (P<0.05) and exacerbated cell ferroptosis as reflected by the increase in the content of ROS, MDA, LPO, and Fe2+, as well as a decrease in the content of GSH (P<0.05). Compared with the control group, Gyp-L effectively interfered with the expression of 25 tsRNAs in OVCAR3 cells (P<0.05, |log2Fc|>1). Pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/NRF2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/NRF2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 axial expression was significantly aberrant after Gyp-L intervention (P<0.05). ConclusionThe pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/Nrf2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling pathways are involved in OC development. Gyp-L inhibits OC development by activating OVCAR3 cell ferroptosis onset mainly through the mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling axes.
10.Molecular Mechanism of Treating Different Diseases with Same Treatment of Gypenoside L Affecting Oxidative Damage HUVEC and OVCAR-3 Through EGFR/STAT3/Glycolytic Pathway
Ying YANG ; Jiao ZHAO ; Xiaofei SUN ; Jiaxin WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):125-134
ObjectiveWith the epidermal growth factor receptor(EGFR)/Signal Transducers and Activators of Transcription(STAT3)/Hexokinase 2(HK2) signaling pathway in atherosclerosis (AS) and ovarian cancer (OC) as the entry point, this paper discusses the molecular mechanism of Gypenoside L (Gyp-L) treating AS and OC with different diseases, provides a new perspective and theoretical basis for TCM treating AS and OC with EGFR-STAT3-HK2 pathway, and enriches the scientific connotation of the theory of "cytoskeleton in the heart". MethodsCCK-8 was used to detect the proliferation of HUVEC and OVCAR-3 cells, in order to determine the intervention concentration for subsequent experiments. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. Western blot was used to detect the expression levels of relevant proteins. Furthermore, two cell models overexpressing EGFR were constructed and co treated with Gyp-L. HUVEC cells were divided into control, ox-LDL, OE-NC, OE-EGFR, OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. OVCAR-3 cells were divided into control, OE-NC, OE-EGFR , OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Western blot was used to detect the expression levels of EGFR-STAT3-HK2 pathway related proteins. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. ResultsGyp-L can significantly reduce the NO content of HUVEC and the pyruvate and LDH content of two cell lines (P<0.05); Inhibit the proliferation and migration ability of OVCAR-3 cells; Reduce the expression levels of EGFR/STAT3/HK2 pathway related proteins in HUVEC and OVCAR-3 cell lines (P<0.05), and inhibit the glycolysis pathway. ConclusionGyp-L can inhibit glycolysis in HUVEC and OVCAR-3 cells through the EGFR/STAT3/HK2 pathway,thereby suppressing the occurrence and development of AS and OC.


Result Analysis
Print
Save
E-mail