1.Bioinformatics Reveals Mechanism of Xiezhuo Jiedu Precription in Treatment of Ulcerative Colitis by Regulating Autophagy
Xin KANG ; Chaodi SUN ; Jianping LIU ; Jie REN ; Mingmin DU ; Yuan ZHAO ; Xiaomeng LANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):166-173
ObjectiveTo explore the potential mechanism of Xiezhuo Jiedu prescription in regulating autophagy in the treatment of ulcerative colitis (UC) by bioinformatics and animal experiments. MethodsThe differentially expressed genes (DEGs) in the colonic mucosal tissue of UC patients was obtained from the Gene Expression Omnibus (GEO), and those overlapped with autophagy genes were obtained as the differentially expressed autophagy-related genes (DEARGs). DEARGs were imported into Metascape and STRING, respectively, for gene ontology/Kyoto Encyclopedia of Genes and Genomics (GO/KEGG) enrichment analysis and protein-protein interaction (PPI) analysis. Finally, 15 key DEARGs were obtained. The core DEARGs were obtained by least absolute shrinkage and selection operator (LASSO) regression and receiver operating characteristic curve (ROC) analysis. The CIBERSORT deconvolution algorithm was used to analyze the immunoinfiltration of UC patients and the correlations between core DEARGs and immune cells. C57BL/6J mice were assigned into a normal group and a modeling group. The mouse model of UC was established by free drinking of 2.5% dextran sulfate sodium. The modeled mice were assigned into low-, medium-, and high-dose Xiezhuo Jiedu prescription and mesalazine groups according to the random number table method and administrated with corresponding agents by gavage for 7 days. The colonic mucosal morphology was observed by hematoxylin-eosin staining. The protein and mRNA levels of cysteinyl aspartate-specific proteinase 1 (Caspase-1), cathepsin B (CTSB), C-C motif chemokine-2 (CCL2), CXC motif receptor 4 (CXCR4), and hypoxia-inducing factor-1α (HIF-1α) in the colon tissue were determined by Western blot and real-time fluorescence quantitative polymerase chain reaction, respectively. ResultsThe dataset GSE87466 was screened from GEO and interlaced with autophagy genes. After PPI analysis, LASSO regression, and ROC analysis, the core DEARGs (Caspase-1, CCL2, CTSB, and CXCR4) were obtained. The results of immunoinfiltration analysis showed that the counts of NK cells, M0 macrophages, M1 macrophages, and dendritic cells in the colonic mucosal tissue of UC patients had significant differences, and core DEARGs had significant correlations with these immune cells. This result, combined with the prediction results of network pharmacology, suggested that the HIF-1α signaling pathway may play a key role in the regulation of UC by Xiezhuo Jiedu prescription. The animal experiments showed that Xiezhuo Jiedu prescription significantly alleviated colonic mucosal inflammation in UC mice. Compared with the normal group, the model group showed up-regulated protein and mRNA levels of caspase-1, CCL2, CTSB, CXCR4, and HIF-1α, which were down-regulated after treatment with Xiezhuo Jiedu prescription or mesalazine. ConclusionCaspase-1, CCL2, CTSB, and CXCR4 are autophagy genes that are closely related to the onset of UC. Xiezhuo Jiedu prescription can down-regulate the expression of core autophagy genes to alleviate the inflammation in the colonic mucosa of mice.
2.Dipsacus asper Treats Alzheimer's Disease in Caenorhabditis elegans by Regulating PPARα/TFEB Pathway
Mengmeng WANG ; Jianping ZHAO ; Limin WU ; Shuang CHU ; Yanli HUANG ; Zhenghao CUI ; Yiran SUN ; Pan WANG ; Hui WANG ; Zhenqiang ZHANG ; Zhishen XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):104-114
ObjectiveTo investigate the anti-Alzheimer's disease (AD) effect of Dipsacus asper(DA) in the Caenorhabditis elegans model, and decipher the underlying mechanism via the peroxisome proliferator-activated receptor α (PPARα)/transcription factor EB (TFEB) pathway. MethodsFirst, transgenic AD C. elegans individuals were assigned into the blank control, model, positive control (WY14643, 20 µmol·L-1), and low-, medium-, and high-dose (100, 200, and 400 mg·L-1, respectively) DA groups. The amyloid β-42 (Aβ42) formation in the muscle cells, the paralysis time, and the deposition of amyloid β-protein (Aβ) in the head were detected. The lysosomal autophagy in the BV2 cell model was examined by Rluc-LC3wt/G120A. The expression levels of lysosomal autophagy-related proteins LC3Ⅱ, LC3I, LAMP2, and TFEB were detected by Western blot. Real-time quantitative polymerase chain reaction (Real-time PCR) was employed to determine the mRNA levels of autophagy-related genes beclin1 and Atg5 and lysosome-related genes LAMP2 and CLN2 downstream of PPARα/TFEB. A reporter gene assay was used to detect the transcriptional activities of PPARα and TFEB. Immunofluorescence was used to detect the fluorescence intensity of PPARα, and the active components of the ethanol extract of DA were identified by UPLC-MS. RCSB PDB, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and Autodock were used to analyze the binding between the active components and PPARα-ligand-binding domain (LBD). ResultsCompared with the model group, the positive control group and 200 and 400 mg·L-1 DA groups showed prolonged paralysis time (P<0.05), and all the treatment groups showed decreased Aβ deposition in the head (P<0.01). DA within the concentration range of 50-500 mg·L-1 did not affect the viability of BV2 cells. In addition, DA enhanced the autophagy flux (P<0.05), up-regulated the mRNA levels of beclin1, Atg5, LAMP2, and CLN2 (P<0.05, P<0.01), promoted the nuclear translocation of TFEB (P<0.05), increased LAMP2 expression and autophagy flux (P<0.05, P<0.01), and enhanced the transcriptional activities of PPARα and TFEB (P<0.01). The positive control group and 200 and 400 mg·L-1 DA groups showed enhanced fluorescence intensity of PPARα in the BV2 nucleus (P<0.01). UPLC-MS detected nine known compounds of DA, from which 8 active components of DA were screened out. The docking results suggested that a variety of components in DA could bind to PPARα-LBD and form stable hydrogen bonds. ConclusionDA may reduce the pathological changes in AD by regulating the PPARα-TFEB pathway.
3.Clinical Application of Green Prescription of Traditional Chinese Medicine:Problems and Solution Strategies
Yike SONG ; Zhijun BU ; Wenxin MA ; Kai LIU ; Yuyi WANG ; Yuan SUN ; Yang SHEN ; Hongkui LIU ; Jianping LIU ; Zhaolan LIU
Journal of Traditional Chinese Medicine 2025;66(11):1094-1098
Green prescription is a written prescription aimed at improving health by promoting physical activity and improving diet, with advantages such as high cost-effectiveness, strong feasibility, and minimal harm to patients. The theory of traditional Chinese medicine (TCM) green prescription integrates the health philosophy of "following rule of yin and yang, and adjusting ways to cultivating health", the exercise philosophy of balancing yin-yang and the five elements, and the dietary philosophy of moderation and balance, which embody core TCM concepts such as treating disease before its onset and harmony between humans and nature. It has also developed traditional exercise practices like Tai Chi, Baduanjin, Wuqinxi, Yi-Gin-Ching, and Qigong, as well as dietary adjustments like medicated diet and herbal wines. However, it is believed that the TCM green prescription currently suffers from insufficient evidence-based research, low patient awareness and acceptance, and weak basic research. Based on this, it is proposed that large-sample clinical trials should be conducted in the future to improve the quality of evidence-based medicine, basic research can be carried out with the help of artificial intelligence and other methods in research design, the hospital information system (HIS) can be used for control at the implementation level, and publicity and patient education can be strengthened through the new media, so as to promote the development and application of the TCM green prescriptions in the field of global health treatment.
4.Mechanism of Xiezhuo Jiedu Recipe in Preventing Colorectal Adenoma in Mice Through miRNA-34a-5p/PI3K/Akt Signalling Pathway
Sujie JIA ; Chaodi SUN ; Yifan ZHANG ; Xiaomeng LANG ; Jianping LIU ; Xin KANG ; Shijie REN ; Jingyuan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):156-165
ObjectiveKey microRNAs (miRNAs) of colorectal adenoma (CRA) were identified and analyzed by bioinformatics methods, and differentially expressed genes (DEGs) were screened to construct regulatory relationships. The mechanism of Xiezhuo Jiedu recipe in preventing CRA was speculated and verified by animal experiments. MethodThe miRNAs dataset GSE50194 was obtained from the Gene Expression Omnibus (GEO) database of intestinal mucosal tissue of CRA patients, and the differentially expressed miRNAs were screened by GEO2R and Excel. TargetScan, miRTarbase, and miRDB databases were used to predict the target genes of the differentially expressed miRNAs, and an intersection was obtained. Key DEGs were screened through the STRING database and Cytoscape software, and the TRRUST database was used to predict downstream binding transcription factors (TFs). The mRNA intersection was enriched by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) in the Metascape database. DIANA TOOLS were applied to perform KEGG enrichment analysis of key miRNAs, and the key signaling pathways were selected for animal experiments. In animal experiments, the CRA mice model was established by using sodium glycan sulfate (DSS) drinking combined with intraperitoneal injection of azomethane oxide (AOM), and Xiezhuo Jiedu recipe and aspirin were given by intragastric administration at the same time. The experiment lasted for nine weeks. The pathological changes in intestinal tissue were observed by hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of miR-34a-5p in adenoma tissue. Protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), phosphoryl-PI3K (p-PI3K), phosphoryl-Akt (p-Akt), and B cell lymphoma (Bcl)-2 were detected by Western blot. The expression of Cyclin D1 (CCND1) was detected by immunohistochemistry (IHC). In situ terminal transferase labeling (TUNEL) was used to detect apoptosis of adenoma tissue cells. ResultThe GEO database screened the GSE50194 dataset, and miR-34a-5p was selected as the research object from CRA and normal tissue. A total of 93 DEGs were selected. Among them, GO and KEGG enrichment analyses were closely related to biological processes such as transcriptional regulatory complex, RNA polymerase Ⅱ transcriptional regulatory complex, enzyme-linked receptor protein signaling pathway, and DNA-binding transcriptional activator activity, cancer pathway, PI3K/Akt pathway, etc. miR-34a-5p is mainly enriched in PI3K/Akt, cell cycle, and colorectal cancer pathways. Five key DEGs were screened out through the Matescape database, among which Bcl-2 and CCND1 were the key DEGs of miR-34a-5p. Further screening of the TFs of key DEGs revealed that E2F transcription factor 1 (E2F1) and tumor protein P53 (TP53) were the main TFs of Bcl-2 and CCND1. Animal experiments showed that Xiezhuo Jiedu recipe could effectively up-regulate mRNA level of miR-34a-5p, down-regulate the expression of PI3K, Akt, Bcl-2, p-PI3K, and p-Akt proteins in the intestinal tissue of CRA mice, down-regulate the positive expression rate of CCND1, and increase the apoptosis rate of intestinal epithelial cells. ConclusionIt is speculated that Xiezhuo Jiedu recipe may inhibit the abnormal proliferation and promote the apoptosis of intestinal epithelial cells in CRA mice by regulating the miR-34a-5p/PI3K/Akt signaling pathway, thus playing a role in the prevention of CRA.
5.Mechanism of Xiezhuo Jiedu Recipe Regulating Ferroptosis in Treatment of Ulcerative Colitis Based on Bioinformatics and Animal Experiments
Chaodi SUN ; Jianping LIU ; Mingmin DU ; Xin KANG ; Jiancong CUI ; Yuan ZHAO ; Sujie JIA ; Xiaomeng LANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):166-173
ObjectiveThe bioinformatics method was used to screen ferroptosis differential genes (FRGs) closely related to ulcerative colitis (UC), and animal experiments were conducted to verify whether the mechanism of Xiezhuo Jiedu recipe in treating UC is related to the regulation of ferroptosis. MethodThe differentially expressed genes (DEGs) of colonic mucosa tissue of UC patients were obtained from the GEO database, and the intersection of the genes with ferroptosis genes was used to obtain FRGs. The core FRGs were obtained by cluster analysis, minimum absolute contraction and selection operator (LASSO) regression, and receiver operating characteristic curve (ROC) curve analysis. In animal experiments, the UC mouse model was prepared by making the mouse freely drink 2.5% dextran sodium sulfate (DSS). Xiezhuo Jiedu recipe and mesalazine were given by gavage for seven days, and the inflammatory infiltration of colonic mucosa was observed by hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression levels of E3 ubiquitin ligase (FBXW7), zinc finger protein (ZFP36), solute carrier family 7 member 11 (SLC7A11), and Toll-like receptor 4 (TLR4) in colon tissue. The protein expression levels of FBXW7, ZFP36, SLC7A11, and TLR4 in colon tissue were detected by Western blot. ResultDataset GSE87466 was screened from the GEO database, and its intersections with the ferroptosis gene were analyzed to obtain 21 FRGs. After cluster analysis, LASSO regression, and ROC analysis, core FRGs (FBXW7, ZFP36, SLC7A11, and TLR4) were obtained. Immunoinfiltration analysis showed significant differences in the expression of initial B cells, M1 macrophages, plasma cells, and M2 macrophages in the colonic mucosa tissue of UC mice, and there was a significant correlation between core FRGs and these immune cells. Further animal experiments showed that the colonic mucosa tissue of mice in the model group was disorganized and infiltrated by a large number of inflammatory cells. The inflammation of the colonic mucosa tissue of mice in each group was relieved to varying degrees after treatment with Xiezhuo Jiedu recipe and mesalazine, while the colonic mucosa tissue of mice in the high-dose group of Xiezhuo Jiedu recipe showed almost no inflammatory changes. Compared with the normal group, the protein and mRNA expressions of FBXW7, ZFP36, SLC7A11, and TLR4 in the model group were significantly increased, and the expression of core FRGs in colonic mucosa tissue of mice in all groups was significantly down-regulated after treatment with Xiezhuo Jiedu recipe and mesalazine. ConclusionFBXW7, ZFP36, SLC7A11, and TLR4 are ferroptosis genes closely related to the pathogenesis of UC, and Xiezhuo Jiedu recipe can significantly alleviate colonic mucosa inflammation in mice by down-regulating core ferroptosis genes.
6.Improvement of Colonic Mucosa Inflammatory Response in Mice with Ulcerative Colitis by Xiezhuo Jiedu Recipe Through miRNA-155-5p/JAK2/STAT3 Pathway
Chaodi SUN ; Mengmeng ZHAO ; Xiaomeng LANG ; Jie REN ; Xin KANG ; Jiancong CUI ; Sujie JIA ; Yujing MA ; Yue LIU ; Qiang CHUAI ; Wenjing ZHAI ; Jianping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):174-182
ObjectiveThe differential expression of microRNAs (miRNAs) between the active stage and the remission stage of ulcerative colitis (UC) was analyzed by bioinformatics method, and the regulatory relationship was constructed by screening the differentially expressed genes (DEGs). The mechanism of Xizhuo Jiedu recipe in the treatment of UC was speculated and verified by animal experiments. MethodThe miRNAs data set of colonic mucosa tissue of UC patients was obtained from the gene expression database (GEO), and the most differentially expressed miRNAs were screened by GEO2R, Excel, and other tools as research objects. TargetScan, miRTarbase, miRDB, STRING, TRRUST, and Matescape databases were used to screen key DEGs, predict downstream transcription factors (TFs), gene ontology (GO), and conduct Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The key signaling pathways were selected for animal experiments. In animal experiments, the UC mouse model was prepared by making the mouse freely drink 2.5% dextran sodium sulfate (DSS). Xiezhu Jiedu recipe and mesalazine were given by gavage for seven days, and the inflammatory infiltration of colonic mucosa was observed by hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of miR-155-5p in colon tissue. Immunohistochemistry and Western blot were used to detect the protein expression levels of cytokine signal transduction inhibitor (SOCS1), phosphorylated transcriptional signal transductor and activator 3 (p-STAT3), phosphorylated Janus kinase 2 (p-JAK2), and retinoic acid-associated orphan receptor-γt (ROR-γt). The expression levels of transforming growth factor-β (TGF-β), interleukin-17 (IL-17), interleukin-6 (IL-6), and interleukin-10 (IL-10) in serum were detected by enzyme linked immunosorbent assay (ELISA). ResultThe GSE48957 dataset was screened from the GEO database, and miR-155-5p was selected as the research object from the samples in the active and remission stages. 131 DEGs were screened. The GO/KEGG enrichment analysis was closely related to biological processes such as positive regulation of miRNA transcription and protein phosphorylation, as well as signaling pathways such as stem cell signaling pathway, IL-17 signaling pathway, and helper T cell 17 (Th17) cell differentiation. The Matescape database was used to screen out 10 key DEGs, among which SOCS1 was one of the key DEGs of miR-155-5p. Further screening of the TFS of key DEGs revealed that STAT3 was one of the main TFs of SOCS1. The results of animal experiments showed that Xiezhu Jiedu Recipe could effectively down-regulate the mRNA expression of miR-155-5p and protein expression of p-STAT3, p-JAK2, and ROR-γt in colon tissue of UC mice and the expression of IL-17 and IL-6 in serum of UC mice, up-regulate the protein expression of SOCS1 and the expression of TGF-β and IL-10, increase the level of anti-inflammatory factors, and reduce inflammatory cell infiltration. ConclusionIt is speculated that Xizhuo Jiedu recipe may interfere with SOCS1 by regulating the expression of miR-155-5p in UC mice, inhibit the phosphorylation of STAT3, inhibit the differentiation of CD4+ T cells into Th17 cells, reduce the levels of pro-inflammatory factors (IL-17 and IL-6), and increase the levels of anti-inflammatory factors (TGF-β and IL-10). As a result, the inflammation of colon mucosa in UC mice was alleviated.
7.Study on stimulating clinical teaching enthusiasm of medical staff through point-based system in teach-ing performance assessment—a case study of a teaching hospital
Fengyan LI ; Chunlan ZHAO ; Lijie WANG ; Jianping MA ; Shumao SUN
Modern Hospital 2024;24(1):130-133
The initiative and enthusiasm of medical staff in teaching work are the sources of improving the quality of clin-ical teaching.Stimulating the teaching enthusiasm of clinical teachers is an important connotation of the sustainable and high-quality development of teaching hospital.This article aims to establish a point-based teaching performance evaluation system to evaluate clinical teachers,stimulate the enthusiasm of medical staff to participate in clinical teaching activities,and promote clin-ical standardization through teaching.
8.Mechanism of Qizhu Kang'ai Prescription for Inhibiting Proliferation of Hepatocellular Carcinoma by Regulating Tumor Metabolic Reprogramming via PCK1/Akt/p21 Signal Axis
Xin ZHONG ; Rui HU ; Jing LI ; Lanfen PENG ; Xingning LIU ; Qi HUANG ; Jialing SUN ; Xinfeng SUN ; Jianping CHEN ; Benqiang CAI ; Xiaozhou ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):26-36
ObjectiveTo study the effect of Qizhu Kang'ai prescription (QZAP) on the gluconeogenesis enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) in the liver of mouse model of liver cancer induced by diethylnitrosamine (DEN) combined with carbon tetrachloride (CCl4) and Huh7 cells of human liver cancer, so as to explore the mechanism on regulating metabolic reprogramming and inhibiting cell proliferation of liver cancer cells. MethodDEN combined with CCl4 was used to construct a mouse model of liver cancer via intraperitoneal injection. A normal group, a model group, and a QZAP group were set up, in which QZAP (3.51 g·kg-1) or an equal volume of normal saline was administered daily by gavage, respectively. Serum and liver samples were collected after eight weeks of intervention. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (γ-GT), and alpha-fetoprotein (AFP) in mice were detected to evaluate liver function changes of mice in each group. Hematoxylin-eosin (HE) staining and Sirius red staining were used to observe pathological changes in liver tissue. In the cell experiment, Huh7 cells were divided into blank group, QZAP low, medium, and high dose groups and/or PCK1 inhibitor (SKF-34288 hydrochloride) group, and Sorafenib group. The corresponding drug-containing serum and drug treatment were given, respectively. Cell counting kit-8 (CCK-8) method, colony formation experiment, Edu fluorescent labeling detection, intracellular adenosine triphosphate (ATP) content detection, and cell cycle flow cytometry detection were used to evaluate the proliferation ability, energy metabolism changes, and change in the cell cycle of Huh7 cells in each group. Western blot was used to detect the protein expression levels of PCK1, serine/threonine kinase (Akt), phosphorylated Akt (p-Akt), and cell cycle-dependent protein kinase inhibitor 1A (p21). ResultCompared with the model group, the pathological changes such as cell atypia, necrosis, and collagen fiber deposition in liver cancer tissue of mice in the QZAP group were alleviated, and the number of liver tumors was reduced (P<0.01). The serum ALT, AST, γ-GT, and AFP levels were reduced (P<0.01). At the cell level, compared with the blank group, low, medium, and high-dose groups of QZAP-containing serum and the Sorafenib group could significantly reduce the survival rate of Huh7 cells (P<0.01) and the number of positive cells with Edu labeling (P<0.01) and inhibit clonal proliferation ability (P<0.01). The QZAP groups could also reduce the intracellular ATP content (P<0.05) and increase the distribution ratio of the G0/G1 phase of the cell cycle (P<0.05) in a dose-dependent manner. Compared with the model group and blank group, PCK1 and p21 protein levels of mouse liver cancer tissue and Huh7 cells in the QZAP groups were significantly reduced (P<0.05,P<0.01), and the p-Akt protein level was significantly increased (P<0.01). Compared with the blank group, the ATP content and cell survival rate of Huh7 cells in the SKF-34288 hydrochloride group were significantly increased (P<0.05), but there was no statistical difference in the ratio of Edu-positive cells and the proportion of G0/G1 phase distribution. Compared with the SKF-34288 hydrochloride group, the QZAP combined with the SKF-34288 hydrochloride group significantly reduced the ATP content, cell survival rate, and Edu-positive cell ratio of Huh7 cells (P<0.05) and significantly increased the G0/G1 phase distribution proportion (P<0.05). ConclusionQZAP may induce the metabolic reprogramming of liver cancer cells by activating PCK1 to promote Akt/p21-mediated tumor suppression, thereby exerting an anti-hepatocellular carcinoma proliferation mechanism.
9.Application of Quality Evaluation of Blind Method in Clinical Trials of Traditional Chinese Medicine
Zeyang SHI ; Yuan SUN ; Wenxin MA ; Yuyi WANG ; Zhijun BU ; Xuehui WANG ; Youyou ZHENG ; Jianping LIU ; Zhaolan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):75-80
The quality evaluation of the blind method is to evaluate the clinical blind data obtained from clinical trials adopting the blind method and judge the effectiveness of the blind method by investigating the blind effect of different blind objects. A successful blind method can avoid the influence of subjective factors on the test results of subjects and researchers to a certain extent. The quality evaluation of the blind method can reflect not only the effectiveness of the blind method but also the accuracy and credibility of clinical trial results. In recent years, randomized controlled trials have been widely used in the evaluation of the clinical efficacy of traditional Chinese medicine (TCM), but the quality of the implementation of blind methods is uneven, and the evaluation criteria have not yet been formed. In this paper, the data collection methods, calculation principles, advantages, and disadvantages of two quantitative quality evaluation methods of blind methods, namely James Blinding Index (JBI) and Bang Blinding Index (BBI), were introduced. The two indexes were analyzed in a randomized controlled trial of acupuncture and moxibustion to relieve postoperative oral pain. The calculation process of the results was demonstrated by R software and visualized by forest map. At the same time, a tool table was designed to facilitate the collection of evaluation data of blind methods in TCM clinical trials at different stages. Finally, the necessity and feasibility of quality evaluation of blind method in TCM research were discussed to provide a basis for evaluating and improving the quality of blind method implementation in TCM clinical trials.
10.Effect of Diffuse Glioma with Precentral Gyrus Invasion on Interhemispheric Brain Activation: A Task-based FMRI Study
Shanmei ZENG ; Jing ZHAO ; Jianping CHU
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(1):100-107
ObjectivesTo explore the effect of diffuse glioma with precentral-gyrus invasion on fMRI activation maps by grasping T-fMRI. MethodsA total of 56 diffuse glioma patients were divided into precentral-gyrus invasion (PGI: n=21) and precentral-gyrus non-invasion (PGNI: n=35) groups. Three statistical thresholds (P value: 10-4, P1; 10-6, P2; 10-8, P3) were set to obtain the activation maps accordingly (V1, V2 and V3). The interhemispheric and bilateral precentral gyrus activation volumes ratios (IAVR and PAVR) were calculated, respectively. The activation volumes [△V1=V1-V2; △V2=V2-V3; △Vn (ipsilateral)/△Vn’ (contralateral), n=1, 2] within two statistical thresholds and the corresponding interhemispheric ratio was further compared. In addition, the associations of tumor characteristics with IAVR and PAVR were analyzed. ResultsCompared with PGNI, PGI showed significantly decreased IAVR at p1, and the same trends of PAVR in PGI at P1 and P2 (P<0.05). However, neither IAVR nor PAVR showed significant differences at P3. PGI showed significantly lower ratios of △V1/△V1’ than PGNI (P=0.02), except for △V2/△V2’. Additionally, within PGI, PAVR was negatively correlated with tumor volume (P=0.043), and the distance from the tumor to the hand-knob was positively correlated with the IAVR and PAVR (P<0.05). ConclusionDiffuse glioma invading eloquent areas tended to affect interhemispheric asymmetry of activation at relatively lower statistical thresholds than diffuse glioma without invasion, rather than stricter statistical thresholds. Multiple ranges of statistical thresholds were recommended to analyze T-fMRI.

Result Analysis
Print
Save
E-mail