1.Progress in the preoperative use of immune checkpoint inhibitors in liver transplantation for hepatocellular carcinoma
Wenfeng LI ; Jianhua LI ; Zhengxin WANG
Organ Transplantation 2025;16(3):329-337
Liver transplantation is the most effective radical treatment for hepatocellular carcinoma (HCC), especially for patients with HCC complicated by cirrhosis. Since most patients are in an advanced stage of unresectable state when they are present, the preoperative downstaging treatment for liver transplantation in HCC is of great significance for increasing the opportunity for surgery, reducing the dropout rate from the liver transplant waiting list, and thereby lowering the postoperative recurrence rate. Currently, immune checkpoint inhibitor (ICI)-based combination immunotherapy and targeted therapy is the most effective treatment for preoperative downstaging in liver transplantation for HCC. However, the immunoenhancing effects of ICI may increase the risk of post-transplant rejection. Therefore, it is necessary to find a "critical point" that allows ICI to effectively inhibit tumor growth during preoperative downstaging treatment without causing severe rejection after transplantation. This article reviews the latest advances in preoperative ICI treatment protocols, efficacy assessment, indications, contraindications, drug discontinuation timing, and principles of prevention and treatment of rejection in liver transplantation for HCC.
2.Systematic review of risk predictive models for chemotherapy-induced myelosuppression in breast cancer
Yang LIU ; Hongjian LI ; Jianhua WU ; Xuetao LIU ; Min JIAO ; Luhai YU
China Pharmacy 2025;36(5):612-618
OBJECTIVE To systematically evaluate risk prediction models for chemotherapy-induced myelosuppression in breast cancer, and provide a scientific reference for clinical healthcare workers in selecting or developing effective predictive models. METHODS A systematic search was conducted for studies on predictive models of the risk of chemotherapy-induced myelosuppression in breast cancer across the CNKI, VIP, Wanfang, PubMed, Web of Science, Cochrane Library, Embase, and Scopus databases, with a time frame of the establishment of the database to May 7, 2024. Literature was independently screened by 2 investigators, data were extracted according to critical appraisal and data extraction for systematic reviews of predictive model studies, and the risk of bias evaluation tool for predictive model studies was used to analyze the risk of bias and applicability of the included studies. RESULTS There were totally 7 studies, comprising 12 models. Among them, 11 models indicated an area under the subject operating characteristic curve of 0.600-0.908; 2 models indicated calibration. The common predictor variables of the included models were age, pre-chemotherapy neutrophil count, pre-chemotherapy lymphocyte count, and pre-chemotherapy albumin. The overall risk of bias of the 7 studies was high, which was mainly attributed to the flaws in the study design, insufficient sample sizes, inappropriate treatment of variables, non-reporting of missing data, and the lack of indicators for the assessment of the models, but the applicability was good. CONCLUSIONS The predictive performance of risk predictive models for chemotherapy-induced myelosuppression in breast cancer remains to be further enhanced, and the overall risk of model bias is high. Future studies should follow the specifications of model development and reporting, then combine machine learning algorithms to develop risk predictive models with good predictive performance, high stability, and low risk of bias, so as to provide a decision-making basis for the clinic.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
7.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
8.Risk Factor and Risk Prediction Modeling of Rectal Neuroendocrine Tumors
Liang XIE ; Chang LIU ; Jianhua LI ; Jianhui LI ; Xin HAO ; Haiyang HUA
Cancer Research on Prevention and Treatment 2025;52(7):598-604
Objective To analyze the risk factors associated with the occurrence of rectal neuroendocrine tumors (RNETs) and construct a risk prediction model. Methods Clinical data of patients who underwent electronic colonoscopy were collected. The clinical information on patients with and without RNETs were compared, and potential risk factors for RNETs were identified. Binary logistic regression was performed to analyze the relevant risk factors and construct a risk prediction model. Results Among 164 patients, 66 were diagnosed with RNETs, and 98 who did not have such a condition were randomly selected. Univariate logistic regression analysis revealed that age, fatty liver, anxiety and depression, total cholesterol, triglyceride levels, and carcinoembryonic antigen (CEA) were significant factors influencing the occurrence of RNETs (P<0.05). Multivariate logistic regression analysis identified age (P=0.015), anxiety and depression (P=0.031), cholesterol level (P=0.009), fatty liver (P=0.001), and CEA (P<0.001) as independent risk factors for RNETs. The participants were randomly divided into training and test sets at a 7:3 ratio. The training set was used to construct a nomogram-based risk prediction model, and the testing set was used for internal validation. The area under the curve values for the training and testing sets were 0.843 and 0.772, respectively (P>0.05). These findings indicate a good discriminative performance. The calibration curves for the training and testing sets were in good agreement with the 45° standard line, which suggests that the predicted probabilities were consistent with the actual outcomes. Decision curve analysis showed that the model provided a high net benefit within a threshold range of 0.2 to 0.7 for clinical decision making. Conclusion Young age, fatty liver, high CEA levels, high cholesterol levels, and anxiety and depression are independent risk factors for RNETs. The nomogram model constructed based on these risk factors exhibits a strong capability to predict the occurrence of RNETs, and clinical intervention can be considered based on the predicted probability values.
9.Construction of a predictive model for the efficacy of SNRI antidepressants in inpatients with moderate and severe depression based on machine learning
Xuetao LIU ; Yang LIU ; Hongjian LI ; Jianhua WU ; Siming LIU ; Ming JIAO ; Luhai YU
China Pharmacy 2025;36(15):1936-1941
OBJECTIVE To construct a prediction model for the efficacy of serotonin-norepinephrine reuptake inhibitor (SNRI) in inpatients with moderate and severe depression by using a machine learning method. METHODS The case records of inpatients with moderate and severe depression treated with SNRI antidepressants were collected from a third-grade class-A hospital in Xinjiang from January 2022 to October 2024; those patients were divided into effective group and ineffective group based on the Hamilton depression scale-24 score reduction rate. After screening the characteristic variables related to the therapeutic efficacy of SNRI drugs through LASSO regression, five prediction models including support vector machine, k-nearest neighbor, random forest, lightweight gradient boosting machine and extreme gradient boosting were constructed using the training set. Bayesian optimization was used to adjust the hyperparameters of these models. The performance of the models was evaluated in the validation set to select the optimal model. The Shapley additive explanations method was used to perform explainable analysis on the best model. RESULTS The medical records from 355 hospitalized patients with moderate and severe depression were collected, comprising 285 cases in the effective group and 70 cases in the ineffective group, resulting in an overall therapeutic response rate of 80.28%. After feature variable screening, five characteristic variables for therapeutic efficacy were obtained, including Hamilton anxiety scale, blood urea nitrogen, combination of anti-anxiety drugs, drinking history, and first onset of the disease. Compared with other models, the random forest model performed the best. The area under the receiver operating characteristic curve was 0.85, the area under the precision-recall curve was 0.87, the accuracy was 0.74, and the recall rate value was 0.75. CONCLUSIONS The random forest model constructed based on five characteristic variables demonstrates potential for predicting the therapeutic efficacy of SNRI antidepressants in hospitalized patients with moderate and severe depression.
10.Investigation of the current status of radiation diagnosis and treatment resources and their use in Taiyuan City, China
Jianhua SHI ; Wenyan GUO ; Qiyu ZHAO ; Lixian ZHENG ; Li XU ; Fengjiao WU ; Xiaoai ZHAO ; Lili GUO
Chinese Journal of Radiological Health 2025;34(4):508-514
Objective To understand the current status of radiation diagnosis and treatment resources and their use in Taiyuan City, China, and provide data support for optimizing resource allocation and standardizing diagnosis and treatment. Methods A census-based approach was implemented using a standardized questionnaire to collect basic information on radiation diagnosis and treatment institutions in Taiyuan City. The number and use frequency of radiation diagnosis and treatment resources were calculated based on the resident population of Taiyuan City at the end of 2023. Results There were a total of 562 radiation diagnosis and treatment institutions in Taiyuan City, with

Result Analysis
Print
Save
E-mail