1.Establishment of HPLC characteristic chromatogram and quantitative transmission laws for Baqi Rougan Decoction reference sample
Sai-Long GENG ; Qin ZHOU ; Shui-Gen SUN ; Man LI ; Li-Jie ZHAO ; Ji-Quan ZHANG ; Yi FENG
Chinese Traditional Patent Medicine 2024;46(2):370-378
AIM To establish the HPLC characteristic chromatogram of Baqi Rougan Decoction reference sample,and to investigate its quantitative transmission laws.METHODS The contents of calycosin 7-O-glucoside,hesperidin,rosmarinic acid,curcumenol and nystose were determined.The transfer rates of decoction piece-aqueous decoction-reference sample were calculated,after which the paste-forming rate and pH value were recorded.RESULTS There were sixteen characteristic peaks in fifteen batches of reference samples with the similarities of 0.90,nine of which were identified.The average transfer rates of nystose and calycosin 7-O-glucoside in the reference sample were(83.14±6.25)%and(77.81±8.31)%,while those of rosmarinic acid and curcumenol in the aqueous decoction-reference sample were(81.71±6.27)%and(72.16±5.91)%,along with the average paste-forming rate and pH value of(38.91%±1.46%)and 5.13±0.08,respectively.CONCLUSION This stable and feasible method can provide a reference for the selection of preparation process and evaluation of key chemical properties for Baqi Rougan Decoction.
2.Integrated Detection Techniques for Forensic DNA and DNA Methylation Markers
Na YI ; Guang-Bin ZHAO ; Ke-Lai KANG ; Yi-Ren YAO ; Ke-Li GUO ; Jie ZHAO ; Chi ZHANG ; Lei MIAO ; Le WANG ; An-Quan JI
Progress in Biochemistry and Biophysics 2024;51(9):2156-2167
DNA genetic markers have always played important roles in individual identification, kinship analysis, ancestry inference and phenotype characterization in the field of forensic medicine. DNA methylation has unique advantages in biological age inference, body fluid identification and prediction of phenotypes. The majority of current studies independently examine DNA and DNA methylation markers using various workflows, and they use various analytical procedures to interpret the biological information these two markers present. Integrated methods detect DNA and DNA methylation markers simultaneously through a single experimental workflow using the same preparation of sample. Therefore, they can effectively reduce consumption of time and cost, streamline experimental procedures, and preserve valuable DNA samples taken from crime scenes. In this paper, the integrated detection approaches of DNA and DNA methylation markers on different detection platforms were reviewed. In order to convert methylation modifications to detectable forms, several options were available for pretreatment of genomic DNA, including digestion with methylation-sensitive restriction enzyme, affinity enrichment of methylated fragments, conversion of methylated or unmethylated cytosine. Multiplexed primers can be designed for DNA markers and converted DNA methylation markers for co-amplification. The schemes of using capillary electrophoresis platform for integrated detection add the pretreatment of genomic DNA on the basis of detecting DNA genetic markers. DNA and DNA methylation markers are then integrated by co-amplification. But the limited number of fluorescent options available and the length of amplicons restrict the type and quantity of markers that can be integrated into a panel. Pyrophosphate sequencing also supports integrated detection of DNA and DNA methylation markers. On this platform, due to the conversion of unmethylated cytosine to thymine after treatment with bisulfite, the methylation level of CpG site can be directly calculated using the peak height ratio of cytosine bases and thymine bases. Therefore, the methylation levels and SNP typing can be simultaneously obtained. However, due to the limited read length of sequencing, the detection of markers with longer amplicons is restricted. It is not conducive to fully interpret the complete information of the target sequence. Next-generation sequencing also supports integrated detection of DNA and DNA methylation markers. A preliminary experimental process including DNA extraction, pretreatment of genomic DNA, co-preparation of DNA and DNA methylation library and co-sequencing, has been formed based on the next-generation sequencing platform. It confirmed the feasibility of next-generation sequencing technology for integrated detection of DNA and DNA methylation markers. In field of biomedicine, various integrated detection schemes and corresponding data analysis approaches of DNA and DNA genetic markers developed based on the above detection process.Co-analysis can simultaneously obtain the genomic genetic and epigenetic information through a single analytic process. These schemes suggest that next-generation sequencing may be an effective method for achieving more accurate and highly integrated detection, helping to explore the potential for application in forensic biological samples. We finally explore the impact of interactions between sites and different pretreatment methods on the integrated detection of DNA and DNA methylation markers, and also propose the challenge of applying third-generation sequencing for integrated detection in forensic samples.
3.Establishment of SHERLOCK-HBA Detection Method and Its Application in Blood Identification
Qian-Wei YAO ; Hong-Xia HE ; Sheng HU ; Yi-Xia ZHAO ; Yu LUO ; An-Quan JI ; Qi-Fan SUN
Progress in Biochemistry and Biophysics 2024;51(8):1971-1982
ObjectiveRapid and accurate identification of body fluid traces at crime scenes is crucial for case investigation. Leveraging the speed and sensitivity of nucleic acid detection technology based on SHERLOCK, our research focuses on developing a peripheral blood SHERLOCK-HBA detection system to detect mRNA in forensic practice. MethodsShort crRNA fragments targeting the blood-specific mRNA gene HBA were designed and screened, alongside RPA primers. Optimal RPA primers were selected based on specificity and amplification efficiency, leading to the establishment of the RPA system. The most efficient crRNA was chosen based on relative fluorescence units (RFU) generated by the Cas protein reaction, and the Cas protein reaction system was constructed to establish the SHERLOCK-HBA detection method. The RPA and Cas protein reaction systems in the SHERLOCK detection system were then individually optimized. A total of 79 samples of five body fluids were tested to evaluate the method’s ability to identify blood, with further verification through species-specific tests, sensitivity tests, mixed spots detection, aged samples, UV-irradiated samples, and actual casework samples. ResultsThe SHERLOCK reaction system for the peripheral blood-specific marker HBA was successfully established and optimized, enabling detection within 30 min. The method demonstrated a detection limit of 0.001 ng total RNA, better than FOB strip method and comparable to RT-PCR capillary electrophoresis. The system could detect target body fluids in mixed samples and identify blood in samples stored at room temperature for three years and exposed to UV radiation for 32 h. Detection of 11 casework samples showed performance comparable to RT-PCR capillary electrophoresis. ConclusionThis study presents a CRISPR/Cas-based SHERLOCK-HBA detection system capable of accurately, sensitively, and rapidly identifying blood samples. Introducing CRISPR/Cas technology to forensic body fluid identification represents a significant advancement in applying cutting-edge molecular biology techniques to forensic science.The method’s simplicity, shorter detection time, and independence from specialized equipment make it promising for rapid blood sample identification in forensic cases.
4.Establishment and Application of a Duplex Real Time Fluorogenic Quantitative PCR Assay System for miR-451a and miR-21-5p
Shu-Xiao HU ; Hui-Xiang CHEN ; Sheng HU ; Yi-Xia ZHAO ; An-Quan JI ; Yang LI ; Jie LIAN ; Qi-Fan SUN
Progress in Biochemistry and Biophysics 2024;51(3):706-715
ObjectiveBody fluid stains left at crime scenes are frequently trace amounts, while the identification of body fluids through real time fluorogenic quantitative technique often necessitates the repeated detection within the limited sample, as multiple miRNA markers are the basis for the identification. Based on the goal of both the throughput and efficiency improvement of miRNA analysis in trace samples, a duplex real time fluorogenic quantitative PCR assay system was designed to accurately quantify two miRNAs simultaneously, and the system should be further verified by actual sample for the body fluid identification. MethodsThe duplex real time fluorogenic quantitative PCR system of miR-451a to miR-21-5p was established with specially designed primers and probes, and the concentrations of the primers and probes were both optimized. The specificity, sensitivity and reproducibility of the system were validated, while its capability for body fluid identification was assessed using the miR-451a to miR-21-5p ratio. ResultsThe optimized assay system exhibited excellent specificity and repeatability, with coefficients of variation consistently below 8% for both intra- and inter-batch variability. The amplification efficiency of miR-451a and miR-21-5p reached 71.77% and 74.81%, respectively, with high and relatively consistent results. By utilizing this duplex real time fluorogenic quantitative PCR assay system, a total of 58 body fluid samples were analyzed, exhibiting a discrimination rate of 100% between blood and non-blood samples, as well as between peripheral blood and menstrual blood samples. Moreover, the results, obtained from single real time fluorogenic quantitative PCR assay system and duplex real time fluorogenic quantitative PCR assay system, showed no statistically significant difference with randomly selected blood samples (n=20). Compared to previous single real time fluorogenic quantitative PCR assay system, the sensitivity of duplex real time fluorogenic quantitative PCR assay system exhibited remarkable improvement. A minimum input of only 0.1 ng total RNA was sufficient for accurate detection of peripheral blood and menstrual blood samples, while saliva, semen, and vaginal secretion required only 1 ng total RNA for precise identification purposes. Additionally, the duplex real time fluorogenic quantitative PCR assay system successfully differentiated between different types of body fluids in simulated samples under natural outdoor conditions. ConclusionThe duplex real time fluorogenic quantitative PCR assay system effectively reduced both the time and material costs by half compared to the single system, especially suitable for the examination of body fluid stains left at crime scenes, solving the contradiction between the trace amount and the multiple sample volumes demand of repeated real time fluorogenic quantitative PCR. The duplex real time fluorogenic quantitative PCR assay successfully distinguished blood and other body fluid, as well as peripheral blood and menstrual blood samples, which maintains an equivalent capability for body fluid identification with half sample, time and reagent consumption. This system provides an efficient tool for identifying suspicious body fluids, as well as a foundation for more multiplexed real time fluorogenic quantitative PCR assay system research.
5.Application of pediatric visualized teaching network on integrated online-offline teaching of medical students in the eight-year program
Meiying QUAN ; Ji LI ; Xiaoyan TANG ; Jun ZHAO ; Zhenghong LI
Chinese Journal of Medical Education Research 2024;23(11):1484-1488
Objective:To establish a pediatric visualized teaching network containing disease images and videos, and to investigate its application effect in assisting the integrated online-offline teaching of pediatric students.Methods:The medical students of classes 2014 and 2015 in the eight-year program who studied as an intern in Department of Pediatrics, Peking Union Medical College Hospital, were enrolled as subjects. The medical students of class 2014 before the application of the pediatric visualized teaching network in the integrated online-offline teaching of pediatrics were enrolled as control group ( n=75), and the medical students of class 2015 after the application of the network were enrolled as experimental group ( n=64). The two groups were compared in terms of the results of group interview and the scores of clinical competency self-assessment scale before and after teaching assisted by the pediatric visualized teaching network. SPSS 26.0 software was used to perform a statistical analysis, with a significance level of α=0.05. Results:During the interview, most students thought that the visualized teaching network improved their learning interest in pediatrics and reduced the emotion of fear of difficulties when they just entered the pediatric internship. They were more confident in operation, and there were also increases in the degree of participation and success rate of operation. There were significant differences between the control group and the experimental group in the scores of six dimensions of the clinical competency self-assessment scale, professional competence [(3.1±0.4) vs. (4.2±0.6), P<0.001], knowledge and skills [(3.7±0.9) vs. (4.2±0.8), P<0.001], patient care [(3.7±0.8) vs. (4.3±0.6), P<0.001], communication and cooperation [(3.7±0.4) vs. (4.2±0.7), P<0.001], teaching ability [(3.8±0.5) vs. (4.3±0.8), P<0.001], lifelong learning [(3.9±0.6) vs. (4.4±0.6), P<0.001]. Conclusions:The visualized teaching network promotes the transformation of offline teaching to integrated online-offline teaching and the optimization of clinical competency-oriented teaching system.
6.Effects of sRNA 00085 on the environmental fitness of Listeria monocytogenes
Jing DENG ; Ji ZHI ; Zi-Qiu FAN ; Xue-Hui ZHAO ; Ya-Li SONG ; Hui-Tian GOU ; Yan-Quan WEI ; Qing CAO
Chinese Journal of Zoonoses 2024;40(7):620-627
The purpose of this study was to investigate the regulatory effects of biofilm associated non-coding small RNA(sRNA)00085 on the survival and environmental fitness of Listeria monocytogenes.Homologous recombination technology was used to construct a deletion mutant strain(△sRNA 00085)and a complementary strain(C △sRNA 00085)of the sRNA00085 target gene.The differences in biological characteristics were compared among the standard strain,△sRNA 00085,and C△sRNA 00085.The deletion of sRNA00085 led to a significant decrease in biofilm formation capacity and sensitivity to several antibiotics,including penicillin,piperacillin,doxycycline,tetracycline,vancomycin,and cotrimoxazole.However,only the minimum inhibitory concentration(MIC)of tetracycline exhibited a significant decrease in △sRNA00085.Meanwhile,the decreased biofilm formation and antibiotic resistance of the sRNA00085 mutant were restored in the C△sRNA00085 strain.Furthermore,we investigated the transcription levels of tetracycline resistance-related genes in L.monocytogenes.Down-regu-lated transcription of the tetS gene but no significant difference in transcription of the tetA gene were observed in △sRNA 00085 compared with the standard strain and C△sRNA00085.Moreover,the elimination of sRNA00085 did not affect bacterial growth ability or sensitivity to disinfectants.These findings highlight that sRNA00085 plays an important role in the environ-mental adaptability of L.monocytogenes by affecting bacterial biofilm formation and resistance.
7.Polypeptide from Moschus Suppresses Lipopolysaccharide-Induced Inflammation by Inhibiting NF-κ B-ROS/NLRP3 Pathway.
Jing YI ; Li LI ; Zhu-Jun YIN ; Yun-Yun QUAN ; Rui-Rong TAN ; Shi-Long CHEN ; Ji-Rui LANG ; Jiao LI ; Jin ZENG ; Yong LI ; Zi-Jian SUN ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2023;29(10):895-904
OBJECTIVE:
To examine the anti-inflammatory effects and potential mechanisms of polypeptide from Moschus (PPM) in lipopolysaccharide (LPS)-induced THP-1 macrophages and BALB/c mice.
METHODS:
The polypeptide was extracted from Moschus and analyzed by high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Subsequently, LPS was used to induce inflammation in THP-1 macrophages and BALB/c mice. In LPS-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and lactate dehydrogenase release assays; the proinflammatory cytokines and reactive oxygen species (ROS) were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively; and protein and mRNA levels were measured by Western blot and real-time quantitative polymerase chain reaction (qRT-PCR), respectively. In LPS-induced BALB/c mice, the proinflammatory cytokines were measured, and lung histology and cytokines were observed by hematoxylin and eosin (HE) and immunohistochemical (IHC) staining, respectively.
RESULTS:
The SDS-PAGE results suggested that the molecular weight of purified PPM was in the range of 10-26 kD. In vitro, PPM reduced the production of interleukin 1β (IL-1β), IL-18, tumor necrosis factor α (TNF-α), IL-6 and ROS in LPS-induced THP-1 macrophages (P<0.01). Western blot analysis demonstrated that PPM inhibited LPS-induced nuclear factor κB (NF-κB) pathway and thioredoxin interacting protein (TXNIP)/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome pathway by reducing protein expression of phospho-NF-κB p65, phospho-inhibitors of NF-κB (Iκ Bs) kinase α/β (IKKα/β), TXNIP, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1 (P<0.05 or P<0.01). In addition, qRT-PCR revealed the inhibitory effects of PPM on the mRNA levels of TXNIP, NLRP3, ASC, and caspase-1 (P<0.05 or P<0.01). Furthermore, in LPS-induced BALB/c mice, PPM reduced TNF-α and IL-6 levels in serum (P<0.05 or P<0.01), decreased IL-1β and IL-18 levels in the lungs (P<0.01) and alleviated pathological injury to the lungs.
CONCLUSION
PPM could attenuate LPS-induced inflammation by inhibiting the NF-κB-ROS/NLRP3 pathway, and may be a novel potential candidate drug for treating inflammation and inflammation-related diseases.
8.Changes in Urinary Metabolomics of Female Kashin-Beck Disease Patients in Qinghai-Tibet Plateau, China.
Qiang LI ; Xin ZHOU ; Hong Mei XUE ; Jian Ling WANG ; Ji Quan LI ; Yan Mei ZHAO ; Jie CHAO ; Yang Yang CHEN ; Li Qing XU ; Zhi Jun ZHAO ; Li Hua WANG
Biomedical and Environmental Sciences 2023;36(6):537-541
9.Analysis of Chinese Medical Syndrome Features of Ischemic Stroke Based on Similarity of Symptoms Subgroup.
Xiao-Qing LIU ; Run-Shun ZHANG ; Xue-Zhong ZHOU ; Hong ZHOU ; Yu-Yao HE ; Shu HAN ; Jing ZHANG ; Zi-Xin SHU ; Xue-Bin ZHANG ; Jing-Hui JI ; Quan ZHONG ; Li-Li ZHANG ; Zi-Jun MOU ; Li-Yun HE ; Lun-Zhong ZHANG ; Jie YANG ; Yan-Jie HU ; Zheng-Guang CHEN ; Xiao-Zhen LI ; Yan TAN ; Zhan-Feng YAN ; Ke-Gang CAO ; Wei MENG ; He ZHAO ; Wei ZHANG ; Li-Qun ZHONG
Chinese journal of integrative medicine 2023;29(5):441-447
OBJECTIVE:
To derive the Chinese medicine (CM) syndrome classification and subgroup syndrome characteristics of ischemic stroke patients.
METHODS:
By extracting the CM clinical electronic medical records (EMRs) of 7,170 hospitalized patients with ischemic stroke from 2016 to 2018 at Weifang Hospital of Traditional Chinese Medicine, Shandong Province, China, a patient similarity network (PSN) was constructed based on the symptomatic phenotype of the patients. Thereafter the efficient community detection method BGLL was used to identify subgroups of patients. Finally, subgroups with a large number of cases were selected to analyze the specific manifestations of clinical symptoms and CM syndromes in each subgroup.
RESULTS:
Seven main subgroups of patients with specific symptom characteristics were identified, including M3, M2, M1, M5, M0, M29 and M4. M3 and M0 subgroups had prominent posterior circulatory symptoms, while M3 was associated with autonomic disorders, and M4 manifested as anxiety; M2 and M4 had motor and motor coordination disorders; M1 had sensory disorders; M5 had more obvious lung infections; M29 had a disorder of consciousness. The specificity of CM syndromes of each subgroup was as follows. M3, M2, M1, M0, M29 and M4 all had the same syndrome as wind phlegm pattern; M3 and M0 both showed hyperactivity of Gan (Liver) yang pattern; M2 and M29 had similar syndromes, which corresponded to intertwined phlegm and blood stasis pattern and phlegm-stasis obstructing meridians pattern, respectively. The manifestations of CM syndromes often appeared in a combination of 2 or more syndrome elements. The most common combination of these 7 subgroups was wind-phlegm. The 7 subgroups of CM syndrome elements were specifically manifested as pathogenic wind, pathogenic phlegm, and deficiency pathogens.
CONCLUSIONS
There were 7 main symptom similarity-based subgroups in ischemic stroke patients, and their specific characteristics were obvious. The main syndromes were wind phlegm pattern and hyperactivity of Gan yang pattern.
Humans
;
Syndrome
;
Ischemic Stroke
;
Medicine, Chinese Traditional
;
Liver
;
Phenotype
10.Application of Duplex Droplet Digital PCR Detection of miR-888 and miR-891a in Semen Identification.
Sun-Xiang WEI ; Hui-Xiang CHEN ; Sheng HU ; Yi-Xia ZHAO ; Hui-Xia SHI ; Zhe WANG ; Wen LI ; An-Quan JI ; Qi-Fan SUN
Journal of Forensic Medicine 2022;38(6):719-725
OBJECTIVES:
To establish a system for simultaneous detection of miR-888 and miR-891a by droplet digital PCR (ddPCR), and to evaluate its application value in semen identification.
METHODS:
The hydrolysis probes with different fluorescence modified reporter groups were designed to realize the detection of miR-888 and miR-891a by duplex ddPCR. A total of 75 samples of 5 body fluids (including peripheral blood, menstrual blood, semen, saliva and vaginal secretion) were detected. The difference analysis was conducted by Mann-Whitney U test. The semen differentiation ability of miR-888 and miR-891a was evaluated by ROC curve analysis and the optimal cut-off value was obtained.
RESULTS:
There was no significant difference between the dual-plex assay and the single assay in this system. The detection sensitivity was up to 0.1 ng total RNA, and the intra- and inter-batch coefficients of variation were less than 15%. The expression levels of miR-888 and miR-891a detected by duplex ddPCR in semen were both higher than those in other body fluids. ROC curve analysis showed that the AUC of miR-888 was 0.976, the optimal cut-off value was 2.250 copies/μL, and the discrimination accuracy was 97.33%; the AUC of miR-891a was 1.000, the optimal cut-off value was 1.100 copies/μL, and the discrimination accuracy was 100%.
CONCLUSIONS
In this study, a method for detection of miR-888 and miR-891a by duplex ddPCR was successfully established. The system has good stability and repeatability and can be used for semen identification. Both miR-888 and miR-891a have high ability to identify semen, and the discrimination accuracy of miR-891a is higher.
Female
;
Humans
;
Body Fluids/chemistry*
;
MicroRNAs/analysis*
;
Real-Time Polymerase Chain Reaction/methods*
;
Saliva/chemistry*
;
Semen/chemistry*
;
Male

Result Analysis
Print
Save
E-mail