1.Intraventricular Vancomycin Therapy for Intractable Bacillus cereus Ventriculitis
Jong Woo HAHN ; Hee young JU ; Meerim PARK ; Eun Sang YI ; Byung Kiu PARK ; Sang Hoon SHIN ; Sang Hyun LEE ; Hyeon Jin PARK ; Ji Man KANG
Pediatric Infection & Vaccine 2019;26(2):124-128
Bacillus cereus causes serious central nervous system infections, especially in immunocompromised patients. Successful treatment requires adequate antimicrobial concentrations in the cerebrospinal fluid; however, in some cases, achieving this with systemic treatment alone is difficult. We treated intractable B. cereus ventriculitis with intraventricular vancomycin, with no major adverse events.
Bacillus cereus
;
Bacillus
;
Central Nervous System Infections
;
Cerebral Ventriculitis
;
Cerebrospinal Fluid
;
Immunocompromised Host
;
Injections, Intraventricular
;
Pharmacokinetics
;
Vancomycin
2.Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods.
Jae Sung CHO ; Jihyeon LEE ; Da Un JEONG ; Han Wool KIM ; Won Seok CHANG ; Jisook MOON ; Jin Woo CHANG
Yonsei Medical Journal 2018;59(3):406-415
PURPOSE: Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action. MATERIALS AND METHODS: Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses. RESULTS: Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. CONCLUSION: Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.
Acetylcholinesterase
;
Animals
;
Choline O-Acetyltransferase
;
Cholinergic Neurons
;
Dementia*
;
Hippocampus
;
Humans
;
Injections, Intraventricular
;
Male
;
Mesenchymal Stromal Cells*
;
Methods*
;
Microglia
;
Models, Animal*
;
Negotiating*
;
Placenta
;
Rats*
;
Rats, Sprague-Dawley
;
Stem Cells*
;
Therapeutic Uses
;
Water
3.Early Experience of Automated Intraventricular Type Intracranial Pressure Monitoring (LiquoGuard®) for Severe Traumatic Brain Injury Patients.
Young Sub KWON ; Yun Ho LEE ; Jin Mo CHO
Korean Journal of Neurotrauma 2016;12(1):28-33
OBJECTIVE: The LiquoGuard® system is a new ventricular-type monitoring device that facilitates intracranial pressure (ICP)-controlled or volume-controlled drainage of cerebrospinal fluid (CSF). The purpose of this study is to report the authors' experience with the LiquoGuard® ICP monitoring system, as well as the clinical safety, usefulness, and limitations of this device in the management of patients with traumatic brain injury (TBI). METHODS: Intraventricular ICP monitoring was performed on 10 patients with TBI using the LiquoGuard® monitoring system. ICP measurements, volume of drained CSF, and clinical outcomes were analyzed and discussed. RESULTS: ICP monitoring was performed on 10 patients for a mean duration of 6.9 days. With a mean 82,718 records per patient, the mean initial ICP was 16.4 mm Hg and the average ICP across the total duration of monitoring was 15.5 mm Hg. The mean volume of drained CSF was 29.2 cc/day, with no CSF drained in 4 patients. Seven of 10 patients showed 1 or 2 episodes of abnormal ICP measurements. No patient exhibited complications associated with ICP monitoring. CONCLUSION: The LiquoGuard® system is a versatile tool in the management of TBI patients. Its use is both reliable and feasible for ICP monitoring and therapeutic drainage of CSF. However, episodes of abnormal ICP measurements were frequently observed in patients with slit ventricles, and further study may be needed to overcome this issue.
Brain Injuries*
;
Cerebrospinal Fluid
;
Drainage
;
Humans
;
Injections, Intraventricular
;
Intracranial Pressure*
;
Monitoring, Physiologic
4.The RAS/PI3K Pathway is Involved in the Impairment of Long-term Potentiation Induced by Acute Aluminum Treatment in Rats.
Jing SONG ; Ying LIU ; Hui Fang ZHANG ; Qiao NIU
Biomedical and Environmental Sciences 2016;29(11):782-789
OBJECTIVETo explore the role of RAS/PI3K pathway in the impairment of long-term potentiation (LTP) induced by acute aluminum (Al) treatment in rats in vivo.
METHODSFirst, different dosages of aluminum-maltolate complex [Al(mal)3] were given to rats via acute intracerebroventricular (i.c.v.) injection. Following Al exposure, the RAS activity of rat hippocampus were detected by ELISA assay after the hippocampal LTP recording by field potentiation technique in vivo. Second, the antagonism on the aluminum-induced suppression of hippocampal LTP was observed after the treatment of the RAS activator epidermal growth factor (EGF). Finally, the antagonism on the downstream molecules (PKB activity and the phosphorylation of GluR1 S831 and S845) were tested by ELISA and West-blot assays at the same time.
RESULTSWith the increasing aluminum dosage, a gradually decreasing in RAS activity of the rat hippocampus was produced after a gradually suppressing on LTP. The aluminum-induced early suppression of hippocampal LTP was antagonized by the RAS activator epidermal growth factor (EGF). And the EGF treatment produced changes similar to those observed for LTP between the groups on PKB activity as well as the phosphorylation of GluR1 S831 and S845.
CONCLUSIONThe RAS→PI3K/PKB→GluR1 S831 and S845 signal transduction pathway may be involved in the inhibition of hippocampal LTP by aluminum exposure in rats. However, the mechanisms underlying this observation need further investigation.
Aluminum ; toxicity ; Animals ; Epidermal Growth Factor ; metabolism ; Hippocampus ; drug effects ; metabolism ; Injections, Intraventricular ; Long-Term Potentiation ; drug effects ; Male ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Random Allocation ; Rats ; Receptors, AMPA ; metabolism ; Signal Transduction ; drug effects ; ras Proteins ; metabolism
5.Intraventricular injection of 5,7-dihydroxytryptamine alters neuronal activity of neurons in the medial prefrontal cortex of rat.
Ling-Ling FAN ; Zhi-Hong HU ; Yu-Dong ZHOU ; Qian-Qian LI ; Yan-Ru JIA ; Jin-Feng WANG ; Chun-Wei ZHAO
Acta Physiologica Sinica 2014;66(6):667-674
The present study is aimed to investigated the firing activity of pyramidal neurons and interneurons in the medial prefrontal cortex (mPFC) in rats with bilateral intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT) by using in vivo extracellular recording. The results showed that the injection of 5,7-DHT reduced the 5-hydroxytryptamine (5-HT) levels in the mPFC and dorsal raphe nucleus in the rats. The firing rate of mPFC pyramidal neurons in rats with 5,7-DHT injection was significantly higher than that of normal rats, and the firing pattern of these neurons also changed significantly towards a more burst-firing, while the injection decreased the firing rate of mPFC interneurons and changed the firing pattern of the interneurons towards a more irregular. These results indicate that the lesions of the serotonergic neurons lead to the changes in the firing activity of mPFC pyramidal neurons and interneurons, suggesting that serotonergic system plays an important role in the regulation of the neuronal activity in the mPFC.
5,7-Dihydroxytryptamine
;
pharmacology
;
Action Potentials
;
Animals
;
Dorsal Raphe Nucleus
;
cytology
;
Injections, Intraventricular
;
Interneurons
;
drug effects
;
Prefrontal Cortex
;
cytology
;
Pyramidal Cells
;
drug effects
;
Rats
;
Serotonin
;
metabolism
6.The effect of melanocortin (Mc3 and Mc4) antagonists on serotonin-induced food and water intake of broiler cockerels.
Morteza ZENDEHDEL ; Farshid HAMIDI ; Vahab BABAPOUR ; Kasra MOKHTARPOURIANI ; Ramin Mazaheri Nezhad FARD
Journal of Veterinary Science 2012;13(3):229-234
The current study was designed to examine the effects of intracerebroventricular injections of SHU9119 [a nonselective melanocortin receptor (McR) antagonist] and MCL0020 (a selective McR antagonist) on the serotonin-induced eating and drinking responses of broiler cockerels deprived of food for 24 h (FD24). For Experiment 1, the chickens were intracerebroventricularly injected with 2.5, 5, and 10 microg serotonin. In Experiment 2, the chickens received 2 nmol SHU9119 before being injected with 10 microg serotonin. For Experiment 3, the chickens were given 10 microg serotonin after receiving 2 nmol MCL0020, and the level of food and water intake was determined 3 h post-injection. Results of this study showed that serotonin decreased food intake but increased water intake among the FD24 broiler cockerels and that these effects occurred in a dose-dependent manner. The inhibitory effect of serotonin on food intake was significantly attenuated by pretreatment with SHU9119 and MCL0020. However, the stimulatory effect of serotonin on water intake was not altered by this pretreatment. These results suggest that serotonin hypophagia and hyperdipsia were mediated by different mechanisms in the central nervous system, and that serotonin required downstream activation of McRs to promote hypophagia but not hyperdipsia in the FD24 chickens.
Animals
;
Chickens
;
Dose-Response Relationship, Drug
;
Drinking Behavior/*drug effects
;
Feeding Behavior/*drug effects
;
Food Deprivation
;
Injections, Intraventricular/veterinary
;
Male
;
Melanocyte-Stimulating Hormones/*pharmacology
;
Oligopeptides/*pharmacology
;
Receptor, Melanocortin, Type 3/*antagonists & inhibitors
;
Receptor, Melanocortin, Type 4/*antagonists & inhibitors
;
Serotonin/pharmacology
7.Microinjection of NMDA-type glutamate receptor agonist NMDA and antagonist D-AP-5 into the central nucleus of the amygdale alters water intake rather than food intake.
Junbao YAN ; Jianqun YAN ; Jinrong LI ; Ke CHEN ; Huiling SUN ; Yuan ZHANG ; Xiaolin ZHAO ; Bo SUN ; Shiru ZHAO ; Lin SONG ; Xiaojing WEI
Journal of Southern Medical University 2012;32(5):595-600
OBJECTIVETo investigate the role of N-Methyl-D-aspartic acid (NMDA)-type glutamate receptors in the central nucleus of the amygdale (CeA) in food and water intake.
METHODSMale Sprague-Dawley rats with stainless steel cannulae implanted unilaterally into the CeA were used. The prototypic NMDA receptor agonist NMDA, or the selective NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP-5) was microinjected into the CeA of satiated and euhydrated rats.
RESULTSIntra-CeA injection of 8.50, 17.00, or 34.00 nmol NMDA did not alter food intake but significantly increased water intake 0-1 h after the injection (F(3,32)=3.191, P=0.037) independent of food intake. Without affecting the food intake, injection of 6.34, 12.70, or 25.40 nmol D-AP-5 into the CeA significantly decreased water intake 0-1 h after the injection (F(3,28)=3.118, P=0.042) independent of food intake.
CONCLUSIONNMDA receptors in the CeA may participate in the control of water intake rather than food intake.
2-Amino-5-phosphonovalerate ; pharmacology ; Amygdala ; drug effects ; Animals ; Drinking ; drug effects ; Eating ; drug effects ; Excitatory Amino Acid Agonists ; pharmacology ; Excitatory Amino Acid Antagonists ; pharmacology ; Injections, Intraventricular ; Male ; N-Methylaspartate ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate ; agonists ; antagonists & inhibitors
10.Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: implication of anti-oxidative and neuroprotective effects.
Ze-Qiang QU ; Yan ZHOU ; Yuan-Shan ZENG ; Yan LI ; Peter CHUNG
Biomedical and Environmental Sciences 2009;22(4):318-326
OBJECTIVETo investigate the pretreatment effects of Rhodiola rosea (R. rosea) extract on cognitive dysfunction, oxidative stress in hippocampus and hippocampal neuron injury in a rat model of Alzheimer's disease (AD).
METHODSMale Sprague-Dawley rats were pretreated with R. rosea extract at doses of 1.5, 3.0, and 6.0 g/kg for 3 weeks, followed by bilateral intracerebroventricular injection with streptozotocin (1.5 mg/kg) on days 1 and 3. Behavioral alterations were monitored after 2 weeks from the lesion using Morris water maze task. Three weeks after the lesion, the rats were sacrificed for measuring the malondialdehyde (MDA), glutathione reductase (GR) and reduced glutathione (GSH) levels in hippocampus and histopathology of hippocampal neurons.
RESULTSThe MDA level was significantly increased while the GR and GSH levels were significantly decreased with striking impairments in spatial learning and memory and severe damage to hippocampal neurons in the model rat induced by intracerebroventricular injection of streptozotocin. These abnormalities were significantly improved by pretreatment with R. rosea extract (3.0 g/kg).
CONCLUSIONR. rosea extract can protect rats against cognitive deficits, neuronal injury and oxidative stress induced by intracerebroventricular injection of streptozotocin, and may be used as a potential agent in treatment of neurodegenerative diseases such as AD.
Animals ; Behavior, Animal ; drug effects ; Biomarkers ; metabolism ; Cell Count ; Cognition Disorders ; chemically induced ; drug therapy ; physiopathology ; Hippocampus ; drug effects ; pathology ; Injections, Intraventricular ; Male ; Neurons ; drug effects ; pathology ; Neuroprotective Agents ; pharmacology ; Oxidative Stress ; drug effects ; Phytotherapy ; Plant Extracts ; pharmacology ; therapeutic use ; Rats ; Rats, Sprague-Dawley ; Rhodiola ; metabolism ; Streptozocin ; administration & dosage ; Swimming ; physiology

Result Analysis
Print
Save
E-mail