1.Status epilepticus and coexisting nonepileptic atypical abdominal myoclonus in a preterm neonate with hypoxic ischemic encephalopathy: A case report.
Marie Charmaine S. LUKBAN ; Gerald T. PAGALING ; Marissa B. LUKBAN ; Benilda C. SANCHEZ-GAN
Acta Medica Philippina 2025;59(13):101-104
We describe an unusual case of hypoxic ischemic encephalopathy in a preterm female of 36 weeks who presented with status epilepticus and atypical abdominal myoclonus. The seizures were confirmed electrographically using video electroencephalography (EEG), while the abdominal myoclonus was demonstrated to be nonepileptic, as it had no EEG correlate. Other possible causes of neonatal seizures were excluded. The infant then responded to a gamut of antiseizure medications but the myoclonus persisted. To the best of our knowledge, this is the first report of atypical myoclonus in a preterm baby caused by hypoxic ischemic encephalopathy.
Human ; Hypoxic Ischemic Encephalopathy ; Hypoxia-ischemia, Brain ; Status Epilepticus ; Myoclonus ; Neonate ; Infant, Newborn
2.Impairment of Autophagic Flux After Hypobaric Hypoxia Potentiates Oxidative Stress and Cognitive Function Disturbances in Mice.
Shuhui DAI ; Yuan FENG ; Chuanhao LU ; Hongchen ZHANG ; Wenke MA ; Wenyu XIE ; Xiuquan WU ; Peng LUO ; Lei ZHANG ; Fei FEI ; Zhou FEI ; Xia LI
Neuroscience Bulletin 2024;40(1):35-49
Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.
Mice
;
Animals
;
Hypoxia
;
Oxidative Stress
;
Autophagy
;
Cognition
;
Sirolimus/therapeutic use*
3.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*
4.Responses of blood parameters and hemoglobin subtypes in plateau zokors and plateau pikas to different altitude habitats.
Cong-Hui GAO ; Ji-Mei LI ; Bo XU ; Zhi-Fan AN ; Zhi-Jie WANG ; Xiao-Qi CHEN ; Jia-Yu ZHANG ; Deng-Bang WEI
Acta Physiologica Sinica 2023;75(1):69-81
The plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae) are native species unique to the Qinghai-Tibetan Plateau with successful adaptation to the hypoxic environment. In this study, the number of red blood cells, hemoglobin concentration, mean hematocrit and mean volume of red blood cells were measured in plateau zokors and plateau pikas at different altitudes. Hemoglobin subtypes of two plateau animals were identified by mass spectrometry sequencing. The forward selection sites in two animals' hemoglobin subunits were analyzed by PAML4.8 program. Homologous modeling was used to analyze the effect of forward selection sites on the affinity of hemoglobin to oxygen. The adapting strategies of plateau zokors and plateau pikas to hypoxia at different altitudes were analyzed through comparing blood parameters between the two species. The results indicated that, with increasing altitudes, plateau zokors responded to hypoxia by increasing red blood cell count and decreasing red blood cell volume, while plateau pikas took the opposite strategies to plateau zokors. In erythrocytes of plateau pikas, both adult α2β2 and fetal α2ε2 hemoglobins were identified, while erythrocytes of plateau zokors only had adult α2β2 hemoglobin, however the affinities and the allosteric effects of the hemoglobin of plateau zokors were significantly higher than those of plateau pikas. Mechanistically, in the α and β subunits of hemoglobin of plateau zokors and pikas, the numbers and the sites of the positively selected amino acids as well as the side chain groups polarities and orientations of the amino acids differed significantly, which may result in the difference of the affinities to oxygen of hemoglobin between plateau zokors and pikas. In conclusion, the adaptive mechanisms to respond to hypoxia in blood properties of plateau zokors and plateau pikas are species-specific.
Animals
;
Altitude
;
Amino Acids
;
Hemoglobins
;
Hypoxia
;
Lagomorpha
5.Factors affecting pulmonary arterial pressure in response to high-altitude hypoxic stress.
Zhen ZHOU ; Feng TANG ; Ri-Li GE
Acta Physiologica Sinica 2023;75(1):130-136
The alteration of pulmonary artery pressure is an important physiological indicator to reflect the organism's adaptation to acclimatization or the pathological injury in response to high-altitude hypoxic environment. The effects of hypoxic stress at different altitudes for different time on pulmonary artery pressure are different. There are many factors involved in the changes of pulmonary artery pressure, such as the contraction of pulmonary arterial smooth muscle, hemodynamic changes, abnormal regulation of vascular activity and abnormal changes of cardiopulmonary function. Understanding of the regulatory factors of pulmonary artery pressure in hypoxic environment is crucial in clarifying the relevant mechanisms of hypoxic adaptation, acclimatization, prevention, diagnosis, treatment and prognosis of acute and chronic high-altitude diseases. In recent years, great progress has been made in the study regarding the factors affecting pulmonary artery pressure in response to high-altitude hypoxic stress. In this review, we discuss the regulatory factors and intervention measures of pulmonary arterial hypertension induced by hypoxia from the aspects of hemodynamics of circulatory system, vasoactive state and changes of cardiopulmonary function.
Humans
;
Altitude
;
Arterial Pressure
;
Acclimatization
;
Hypoxia
;
Muscle, Smooth
6.CHD1 deletion stabilizes HIF1α to promote angiogenesis and glycolysis in prostate cancer.
Yu-Zhao WANG ; Yu-Chen QIAN ; Wen-Jie YANG ; Lei-Hong YE ; Guo-Dong GUO ; Wei LV ; Meng-Xi HUAN ; Xiao-Yu FENG ; Ke WANG ; Zhao YANG ; Yang GAO ; Lei LI ; Yu-Le CHEN
Asian Journal of Andrology 2023;25(2):152-157
Chromodomain-helicase-DNA-binding protein 1 (CHD1) deletion is among the most common mutations in prostate cancer (PCa), but its role remains unclear. In this study, RNA sequencing was conducted in PCa cells after clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-based CHD1 knockout. Gene set enrichment analysis (GSEA) indicated upregulation of hypoxia-related pathways. A subsequent study confirmed that CHD1 deletion significantly upregulated hypoxia-inducible factor 1α (HIF1α) expression. Mechanistic investigation revealed that CHD1 deletion upregulated HIF1α by transcriptionally downregulating prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase catalyzing the hydroxylation of HIF1α and thus promoting its degradation by the E3 ligase von Hippel-Lindau tumor suppressor (VHL). Functional analysis showed that CHD1 deletion promoted angiogenesis and glycolysis, possibly through HIF1α target genes. Taken together, these findings indicate that CHD1 deletion enhances HIF1α expression through PHD2 downregulation and therefore promotes angiogenesis and metabolic reprogramming in PCa.
Male
;
Humans
;
Von Hippel-Lindau Tumor Suppressor Protein/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Hypoxia
;
Prostatic Neoplasms/pathology*
;
Glycolysis
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Cell Line, Tumor
;
DNA Helicases/metabolism*
7.A neonatal intelligent regulation system based on the combination of mild hypothermia mattress and hyperbaric oxygen chamber: introduction to a patent.
Ming-Xing ZHU ; Jun-Yu JI ; Xin WANG ; Shi-Xiong CHEN ; Wei-Min HUANG
Chinese Journal of Contemporary Pediatrics 2023;25(1):86-90
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease that affects brain function in neonates. At present, mild hypothermia and hyperbaric oxygen therapy are the main methods for the treatment of neonatal HIE; however, they are independent of each other and cannot be combined for synchronous treatment, without monitoring of brain function-related physiological information. In addition, parameter setting of hyperbaric oxygen chamber and mild hypothermia mattress relies on the experience of the medical practitioner, and the parameters remain unchanged throughout the medical process. This article proposes a new device for the treatment of neonatal HIE, which has the modules of hyperbaric oxygen chamber and mild hypothermic mattress, so that neonates can receive the treatment of hyperbaric oxygen chamber and/or mild hypothermic mattress based on their conditions. Meanwhile, it can realize the real-time monitoring of various physiological information, including amplitude-integrated electroencephalogram, electrocardiogram, and near-infrared spectrum, which can monitor brain function, heart rate, rhythm, myocardial blood supply, hemoglobin concentration in brain tissue, and blood oxygen saturation. In combination with an intelligent control algorithm, the device can intelligently regulate parameters according to the physiological information of neonates and give recommendations for subsequent treatment.
Infant, Newborn
;
Humans
;
Hypothermia, Induced/methods*
;
Hypothermia/therapy*
;
Hyperbaric Oxygenation
;
Brain
;
Electroencephalography
;
Hypoxia-Ischemia, Brain/therapy*
8.A novel method for electroencephalography background analysis in neonates with hypoxic-ischemic encephalopathy.
Xiu-Ying FANG ; Yi-Li TIAN ; Shu-Yuan CHEN ; Quan SHI ; Duo ZHENG ; Ying-Jie WANG ; Jian MAO
Chinese Journal of Contemporary Pediatrics 2023;25(2):128-134
OBJECTIVES:
To explore a new method for electroencephalography (EEG) background analysis in neonates with hypoxic-ischemic encephalopathy (HIE) and its relationship with clinical grading and head magnetic resonance imaging (MRI) grading.
METHODS:
A retrospective analysis was performed for the video electroencephalography (vEEG) and amplitude-integrated electroencephalography (aEEG) monitoring data within 24 hours after birth of neonates diagnosed with HIE from January 2016 to August 2022. All items of EEG background analysis were enrolled into an assessment system and were scored according to severity to obtain the total EEG score. The correlations of total EEG score with total MRI score and total Sarnat score (TSS, used to evaluate clinical gradings) were analyzed by Spearman correlation analysis. The total EEG score was compared among the neonates with different clinical gradings and among the neonates with different head MRI gradings. The receiver operating characteristic (ROC) curve and the area under thecurve (AUC) were used to evaluate the value of total EEG score in diagnosing moderate/severe head MRI abnormalities and clinical moderate/severe HIE, which was then compared with the aEEG grading method.
RESULTS:
A total of 50 neonates with HIE were included. The total EEG score was positively correlated with the total head MRI score and TSS (rs=0.840 and 0.611 respectively, P<0.001). There were significant differences in the total EEG score between different clinical grading groups and different head MRI grading groups (P<0.05). The total EEG score and the aEEG grading method had an AUC of 0.936 and 0.617 respectively in judging moderate/severe head MRI abnormalities (P<0.01) and an AUC of 0.887 and 0.796 respectively in judging clinical moderate/severe HIE (P>0.05). The total EEG scores of ≤6 points, 7-13 points, and ≥14 points were defined as mild, moderate, and severe EEG abnormalities respectively, which had the best consistency with clinical grading and head MRI grading (P<0.05).
CONCLUSIONS
The new EEG background scoring method can quantitatively reflect the severity of brain injury and can be used for the judgment of brain function in neonates with HIE.
Infant, Newborn
;
Humans
;
Hypoxia-Ischemia, Brain/diagnostic imaging*
;
Retrospective Studies
;
Brain Injuries
;
Electroencephalography
;
ROC Curve
9.Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia.
Journal of Zhejiang University. Medical sciences 2023;51(6):750-757
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) is a key factor in pulmonary vascular remodeling. Inhibiting or reversing phenotypic transformation can inhibit pulmonary vascular remodeling and control the progression of hypoxic pulmonary hypertension. Recent studies have shown that hypoxia causes intracellular peroxide metabolism to induce oxidative stress, induces multi-pathway signal transduction, including those related to autophagy, endoplasmic reticulum stress and mitochondrial dysfunction, and also induces non-coding RNA regulation of cell marker protein expression, resulting in PASMCs phenotypic transformation. This article reviews recent research progress on mechanisms of hypoxia-induced phenotypic transformation of PASMCs, which may be helpful for finding targets to inhibit phenotypic transformation and to improve pulmonary vascular remodeling diseases such as hypoxia-induced pulmonary hypertension.
Humans
;
Pulmonary Artery
;
Hypertension, Pulmonary
;
Vascular Remodeling/genetics*
;
Hypoxia/genetics*
;
Myocytes, Smooth Muscle
;
Cell Proliferation/physiology*
;
Cells, Cultured
;
Cell Hypoxia/genetics*
10.Expression Changes of Hypoxia-Inducible Factor-1α in G-CSF Induced Hematopoietic Stem Cell Mobilization.
Hui-Xuan YANG ; Qiao-Chuan LI ; Li-Li WEI ; Yong-Rong LAI
Journal of Experimental Hematology 2023;31(1):221-226
OBJECTIVE:
To investigate the expression and its relative mechanism of hypoxia-inducible factor-1α(HIF-1α) in bone marrow(BM) of mice during G-CSF mobilization of hematopoietic stem cells (HSC) .
METHODS:
Flow cytometry was used to detect the proportion of Lin-Sca-1+ c-kit+ (LSK) cells in peripheral blood of C57BL/6J mice before and after G-CSF mobilization. And the expression of HIF-1α and osteocalcin (OCN) mRNA and protein were detected by RQ-PCR and immunohistochemistry. The number of osteoblasts in bone marrow specimens of mice was counted under the microscope.
RESULTS:
The proportion of LSK cells in peripheral blood began to increase at day 4 of G-CSF mobilization, and reached the peak at day 5, which was significantly higher than that of control group (P<0.05). There was no distinct difference in the expression of HIF-1α mRNA between bone marrow nucleated cells and osteoblasts of steady-state mice (P=0.073), while OCN mRNA was mainly expressed in osteoblasts, which was higher than that in bone marrow nucleated cells (P=0.034). After mobilization, the expression level of HIF-1α increased, but OCN decreased, and the number of endosteum osteoblasts decreased. The change of HIF-1α expression was later than that of OCN and was consistent with the proportion of LSK cells in peripheral blood.
CONCLUSION
The expression of HIF-1α in bone marrow was increased during the mobilization of HSC mediated by G-CSF, and one of the mechanisms may be related to the peripheral migration of HSC induced by osteoblasts inhibition.
Mice
;
Animals
;
Hematopoietic Stem Cell Mobilization
;
Granulocyte Colony-Stimulating Factor/pharmacology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Mice, Inbred C57BL
;
Bone Marrow Cells/metabolism*
;
Osteocalcin/metabolism*
;
RNA, Messenger/metabolism*


Result Analysis
Print
Save
E-mail