1.Visualization Analysis of Research Hotspots and Trends in Field of Tumor Therapy Based on CiteSpace and VOSviewer
Yuhang FANG ; Chuchu ZHANG ; Bailu SUI ; Yan WANG ; Runxi WANG ; Yu CHEN ; Xinhe YUAN ; Hongjun YANG ; Ying ZHANG
Cancer Research on Prevention and Treatment 2025;52(4):297-304
Objective To explore the research hotspots and development trends in the field of cancer treatment in the past decade. Methods The CNKI and Web of Science Core Collection databases were searched for Chinese and English articles related to cancer treatment published over the last 10 years. Bibliometric research methods were employed, including keyword cluster analysis of published literature. Results A total of 45 455 Chinese articles and 866 958 English articles were retrieved. Combining the visualization analysis results and the current research dilemma of tumor treatment revealed that the current research hotspots of tumor treatment domestically and internationally can primarily focus on four key areas. In the realm of targeted therapy, efforts are directed towards the discovery of new drug targets, overcoming resistance to targeted therapy, and the development of monoclonal antibodies and antibody–drug conjugates. In the field of immunotherapy, the emphasis lies in enhancing the response rate to immune checkpoint inhibitors, determining the mechanisms behind resistance to immunotherapy, and improving the safety of treatment. The research in traditional Chinese medicine (TCM) covers evidence-based evaluation studies on TCM treatment, the identification of populations that can gain the most benefit from TCM, and strategies for improving the quality of life. In the area of novel drug development, cutting-edge technologies, such as organoid-based screening for anticancer drugs, synthetic biology, and artificial intelligence, are under investigation. Conclusion New targeted drugs, immune efficacy improvement, multidisciplinary integration, nano-delivery, and TCM innovation are the key research directions in the field of tumor therapy in the future.
2.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
3.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
4.Prevalence and 5-year mortality of dementia and association with geriatric syndromes in elderly population in Beijing
Shimin HU ; Fang LI ; Shaochen GUAN ; Chunxiu WANG ; Xiaowei SONG ; Hongjun LIU ; Jinghong MA ; Yan ZHAO ; Chunxiao LIU ; Huihui LI ; Yanlei ZHANG ; Jian WU ; Xianghua FANG
Chinese Journal of Epidemiology 2024;45(11):1573-1581
Objective:To investigate the prevalence and mortality of dementia and assess the impact of geriatric syndromes (GS) on the risk for dementia and death in elderly population in Beijing.Methods:A cross-sectional survey was conducted in the elderly population aged ≥65 years and selected by a multi-stage sampling in Beijing during 2013-2015. Cognitive function was screened using the Chinese Revised Version of the Mini-Mental State Examination (MMSE). Then, neurological examination and psychiatric assessment were performed for those with the MMSE score lower than the cut-off value. The information about GS prevalence was also collected. The study also collected death records for all individuals from baseline until December 31, 2019. Based on the age and gender distribution from Beijing data of the 2010 Six th National Population Census, the dementia prevalence in the study population was directly standardized. Logistic regression analysis was used to evaluate the association of different forms of dementia with GS, and Cox proportional hazards regression model was used to estimate the hazard ratio ( HR) and 95% CI of death. Results:During 2013-2015, a total of 2 935 individuals completed dementia assessments, of which 167 were diagnosed with dementia. The standardized prevalence of dementia was 5.9% (95% CI: 5.0%-17.4%). The individuals with Alzheimer's disease (AD) and vascular dementia (VaD) accounted for 58.7% and 28.1% of total individuals with dementia, respectively. Aging, lower education level, urinary incontinence, and fall were risk factors for AD, while disability of activity of daily life dependence, hypertension, and stroke were found to be risk factors for VaD. After a median follow-up of 5.44 person-years, 399 deaths were recorded. The 5-year mortality risk was 2.87 (95% CI: 1.92-4.17) times and 4.93 (95% CI: 3.23-7.53) times higher for the elderly individuals with AD and VaD, respectively, compared to non-demented individuals. After adjusting for demographic, GS, and cardiovascular risk factors, the mortality risk in the elderly individuals with AD showed no significant difference compared with non-demented individuals ( HR=1.32, 95% CI: 0.89-1.97), while the mortality risk in those with VaD was 2.46 (95% CI: 1.49-4.05) times higher than that in non-demented individuals. Conclusions:The prevalence of dementia in Beijing increased significantly in the context of population aging, especially the prevalence of AD. The presence of GS increased the risks for AD and VaD, as well as the risk for death. Close attention needs to be paid to GS management in dementia prevention in elderly population.
5.The role and regulatory mechanism of RNA binding protein ZFP36in hypoxia/reoxygenation injury of cardiomyocytes
Guo LÜ ; Chaofeng SUN ; Hao ZHANG ; Hongjun LI ; Fang WANG
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(2):219-227
【Objective】 To explore the role of ZFP36 in cardiomyocyte injury and autophagy induced by hypoxia/reoxygenation (H/R) so as to clarify its molecular regulatory mechanism. 【Methods】 H9C2 rat cardiomyocytes were infected with ZFP36 overexpressing lentivirus (OE-ZFP36) or its negative control lentivirus (OE-ZFP36 NC) to construct stable cell lines, respectively. Transfection of ATG4D overexpression plasmid (OE-ATG4D) improved the expression of ATG4D. Hypoxia/reoxygenation (H/R) induced myocardial cell injury. H9C2 cells were mainly divided into control group, H/R group, OE-ZFP36 NC+H/R group, OE-ZFP36+H/R group, OE-ATG4D NC+H/R group, OE-ATG4D+H/R group, OE-ZFP36+OE-ATG4D NC+H/R group, and OE-ZFP36+OE-ATG4D+H/R group. The protein expressions of ATG4D, Beclin1, LC3 and ZFP36 in H9C2 cells were detected by Western blotting. The mRNA levels of ZFP36 and ATG4D in H9C2 cells were detected by Real-time fluorescence quantitative PCR (qPCR). The viability of H9C2 cells was detected by CCK-8 assay. The levels of interleukin (IL-6) and tumor necrosis factor (TNF-α) in H9C2 cells were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) in H9C2 cells were detected by DCFH-DA method. SOD detection kit was used to detect the SOD level in H9C2 cells. The apoptosis of H9C2 cells was detected by flow cytometry. LC3 autophagosomes in H9C2 cells were detected by cellular immunofluorescence. Dual-luciferase reporter gene assay was used to detect the binding of ZFP36 and ATG4D mRNA in H9C2 cells. 【Results】 Compared with control group, H/R group showed decreased cell viability, increased IL-6 and TNF-α levels, increased ROS levels and decreased SOD levels, increased cell apoptosis. Up-regulated ATG4D and Beclin1 protein expression, increased LC3Ⅱ/LC3Ⅰ ratio, as well as upregulated ZFP36 expression were found in H/R group (all P<0.05). Compared with OE-ZFP36 NC+H/R group, elevated cell viability, decreased IL-6 and TNF-α levels, decreased ROS levels and increased SOD levels, reduced cell apoptosis (P<0.05), and downregulated ATG4D and Beclin1 protein expression, decreased LC3Ⅱ/LC3Ⅰ ratio were shown in OE-ZFP36+H/R group (all P<0.05). Compared with infection with OE-ZFP36 NC lentivirus, infection with OE-ZFP36 lentivirus decreased the luciferase activity of ATG4D 3′-UTR reporter gene, decreased the stability of ATG4D mRNA, and downregulated the H/R-induced ATG4D mRNA expression (all P<0.05). Compared with OE-ATG4D NC+H/R group, OE-ATG4D+H/R group had upregulated ATG4D mRNA and protein expression, decreased cell viability, increased IL-6 and TNF-α levels, increased ROS levels, decreased SOD levels and elevated cell apoptosis (all P<0.05). Compared with OE-ZFP36+OE-ATG4D NC+H/R group, OE-ZFP36+OE-ATG4D+H/R group had decreased cell viability, increased IL-6 and TNF-α levels, increased ROS levels, decreased SOD levels and elevated cell apoptosis (all P<0.05). 【Conclusion】 The expression of ZFP36 is upregulated in H/R-induced cardiomyocyte injury. The overexpression of ZFP36 inhibits H/R-induced cardiomyocyte injury and autophagy by regulating ATG4D, thus resisting cardiomyocyte H/R injury. It proves that ZFP36 is an important regulatory molecule against MI/RI.
6.Cigarette Smoke Extract-TreatedMouse Airway Epithelial Cells-Derived Exosomal LncRNA MEG3 Promotes M1 Macrophage Polarization and Pyroptosis in Chronic Obstructive Pulmonary Disease by Upregulating TREM-1 via m6A Methylation
Lijing WANG ; Qiao YU ; Jian XIAO ; Qiong CHEN ; Min FANG ; Hongjun ZHAO
Immune Network 2024;24(2):e3-
Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages.In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68 + cell number and the levels of iNOS, TNF-α, IL-1β (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO−CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.
7.Glyceryl phenylbutyrate in the treatment of argininosuccinate synthetase deficiency: a case report
Wenjing HU ; Hongjun FANG ; Jingwen TANG ; Qingyun KANG ; Liwen WU
Chinese Journal of Applied Clinical Pediatrics 2023;38(5):384-386
Clinical data of a child with high blood ammonia and suspected argininosuccinate synthetase deficiency (ASSD) in Hunan Children′s Hospital were retrospectively analyzed, including data of mass spectra for blood amino acids and acyl carnitine, urine organic acid analysis and whole exome sequencing.After the exact diagnosis of ASSD and being approved by the Administrative Regulation for Import Medical Devices Urgently Needed in Boao Lecheng International Medical Tourism Pilot Zone of Hainan Free Trade Port, the patient was medicated with Glyceryl phenylbutyrate (GPB) and followed up.The patient was a boy aged 7 years and 8 months, who presented at the Neurology Department of Hunan Children′s Hospital for sleepiness, abnormal mental behavior and personality change for 1 week on December 2, 2021.Before GPB treatment, the highest blood ammonia, alanine aminotransferase and aspartate transaminase were 325.2 μmol/L, 465.7 IU/L and 277.3 IU/L, respectively.Genetic metabolism assay of blood and urine showed a significantly increased citrulline at 697.42 μmol/L; urine organic acid analysis showed increased urinary orotic acid at 144.2 μmol/L, and increased uracil at 65.1 μmol/L.A pure heterozygous variant of the ASS1 gene (c.1087C>T, p.R363W) was detected.After GPB treatment, the blood ammonia levels were 21.3 μmol/L, 54.6 μmol/L and 62.4 μmol/L on the 41 st, 90 th and 146 th days, respectively.Until July 20, 2022 follow-up visit, the patient recovered well without adverse events.This was the first ASSD child in China who was treated with GPB.This case report provided therapeutic experience of ASSD in our country.ASSD has a high mortality rate and unexplained abnormal mental behavior.It is necessary to timely measure blood ammonia, and a series of urea cycle disorders should be well concerned.The diagnosis and management of ASSD rely on the data of metabolism examination and genetic testing.
8.Analysis of clinical phenotype and gene variation of pyridoxine-dependent epilepsy caused by ALDH7A1 gene mutation
Wenjing HU ; Xiuxin LING ; Hongjun FANG ; Zeshu NING ; Mei CHEN ; Liwen WU
Chinese Journal of Neurology 2023;56(4):404-411
Objective:To analyze the clinical phenotype and genotype characteristics of children with pyridoxine-dependent epilepsy (PDE) and provide evidence for diagnosis.Methods:Clinical data of 3 children with PDE enrolled in the Department of Neurology of Hunan Children′s Hospital from July 2016 to December 2020 were collected, and whole-exome sequencing (WES) was used for analysis. Pathogenic variants were analyzed and screened using bioinformatics tools combined with clinical phenotype. Sanger sequencing was used to analyze the source of mutations in children′s core family members.Results:Cases 1 (female) and 2 (male) were siblings, both of whom had convulsions within 24 hours after birth. WES results showed that the siblings carried compound heterozygous mutations of c.796C>T (p.R266 *) and c.1553G>C (p.R518T) in the ALDH7A1 gene, coming from the father and mother of the siblings respectively. Both of the mutations have been reported as pathogenic. Case 3, female, developed convulsions at the age of 1. WES results revealed that she carried compound heterozygous mutations of c.1094-109T>A and c.7C>T (p.R3C) in the ALDH7A1 gene, coming from her father and mother respectively. After searching HGMDPro, PubMed, 1000 Genomes, and dbSNP databases, both of the 2 mutations of c.1094-109T>A and c.7C>T (p.R3C) were not reported. The pathogenicity predictions of the 2 mutations were carried out by different biological information analysis software. The results showed that both of the mutations were harmful. All the 3 children had no epileptic seizures after treatment with increased doses of vitamin B6. Conclusions:When infants have unexplained convulsions, especially in the neonatal stage, PDE caused by ALDH7A1 gene mutation should be considered. Pyridoxine precision treatment has a good effect. The 2 de novo mutations of c.1094-109T>A and c.7C>T (p.R3C) enrich the mutation spectrum in the ALDH7A1 gene. WES has the auxiliary significance in the diagnosis of epilepsy.
9.Genetic analysis of a child with early onset neurodevelopmental disorder with involuntary movement and a literature review.
Wenjing HU ; Hongjun FANG ; Jingwen TANG ; Zhen ZHOU ; Liwen WU
Chinese Journal of Medical Genetics 2023;40(4):385-389
OBJECTIVE:
To explore the clinical phenotype and genetic basis of a child with early onset neurodevelopmental disorder with involuntary movement (NEDIM).
METHODS:
A child who presented at Department of Neurology of Hunan Children's Hospital on October 8, 2020 was selected as the study subject. Clinical data of the child were collected. Genomic DNA was extracted from peripheral blood samples of the child and his parents. Whole exome sequencing (WES) was carried out for the child. Candidate variant was verified by Sanger sequencing and bioinformatic analysis. Relevant literature was searched from the CNKI, PubMed and Google Scholar databases to summarize the clinical phenotypes and genetic variants of the patients.
RESULTS:
This child was a 3-year-and-3-month boy with involuntary trembling of limbs and motor and language delay. WES revealed that the child has harbored a c.626G>A (p.Arg209His) variant of the GNAO1 gene. Sanger sequencing confirmed that neither of his parents has carried the same variant. The variant had been reported in HGMD and ClinVar databases, but not in the dbSNP, ExAC and 1000 Genomes databases. Prediction with SIFT, PolyPhen-2, and Mutation Taster online software suggested that the variant may be deleterious to the protein function. By UniProt database analysis, the encode amino acid is highly conserved among various species. Prediction with Modeller and PyMOL software indicated that the variant may affect the function of GαO protein. Based on the guideline of the American College of Medical Genetics and Genomics (ACMG), the variant was rated as pathogenic.
CONCLUSION
The GNAO1 gene c.626G>A (p.Arg209His) variant probably underlay the NEDIM in this child. Above finding has expanded the phenotypic spectrum of GNAO1 gene c.626G>A (p.Arg209His) variant and provided a reference for clinical diagnosis and genetic counseling.
Humans
;
Computational Biology
;
Genetic Counseling
;
Genomics
;
Mutation
;
Neurodevelopmental Disorders/genetics*
;
Dyskinesias
;
GTP-Binding Protein alpha Subunits, Gi-Go
10.Analysis of clinical phenotype and genetic variants in a child with mitochondrial F-S disease due to variants of FDXR gene.
Wenjing HU ; Xiuxin LING ; Hongjun FANG ; Jingwen TANG ; Qingyun KANG ; Haiyan YANG ; Liwen WU
Chinese Journal of Medical Genetics 2023;40(4):413-418
OBJECTIVE:
To analyze the clinical phenotype and genetic variants of a child suspected for mitochondrial F-S disease.
METHODS:
A child with mitochondrial F-S disease who visited Department of Neurology, Hunan Provincial children's Hospital on November 5, 2020 was selected as research subject of this study. Clinical data of the child was collected. The child was subjected to whole exome sequencing (WES). Bioinformatics tools were used to analyze the pathogenic variants. Candidate variants were verified by Sanger sequencing of the child and her parents.
RESULTS:
WES revealed that the child has harbored compound heterozygous variants of the FDXR gene, namely c.310C>T (p.R104C) and c.235C>T (p.R79C), which were inherited from her father and mother, respectively. Neither variant has been reported in HGMD, PubMed, 1000 Genomes, and dbSNP databases. Both of the variants have been suggested as deleterious according to the prediction results from different bioinformatics analysis software.
CONCLUSION
Mitochondrial diseases should be suspected for patients with multiple system involvement. The compound heterozygous variants of the FDXR gene probably underlay the disease in this child. Above finding has enriched the spectrum of FDXR gene mutations underlying mitochondrial F-S disease. WES can facilitate the diagnosis of mitochondrial F-S disease at the molecular level.
Female
;
Humans
;
Exome Sequencing
;
Mitochondrial Diseases/genetics*
;
Mothers
;
Mutation
;
Phenotype
;
Child

Result Analysis
Print
Save
E-mail