1.Review on toxic effects and mechanisms of rare earth neodymium
Jing LENG ; Ning WANG ; Xinyu HONG
Journal of Environmental and Occupational Medicine 2025;42(6):770-773
		                        		
		                        			
		                        			Neodymium, one of the important rare earth elements, is widely used in various fields such as industry, agriculture, and medicine. Neodymium and its compounds can accumulate in the human body through exposure to air, soil, food and so on, leading to various toxic effects. However, research on the toxicity effects and mechanisms of neodymium is still limited. This review summarized the toxic effects of neodymium on the liver, lung, and other organs, and discussed its genotoxicity, reproductive toxicity, neurotoxicity, and impacts on the endocrine system. The aim is to provide references for revealing the toxic effects of long-term low-dose exposure to neodymium in occupational exposure and environmental pollution scenarios.
		                        		
		                        		
		                        		
		                        	
2.Multidimensional optimization strategies and practical effects of prescription pre-review system
Guangming GAO ; Tianjiao LIU ; Na XU ; Jing LIANG ; Xiangju SUN ; Zhanguo ZHU ; Hong YAN
China Pharmacy 2025;36(14):1797-1801
		                        		
		                        			
		                        			OBJECTIVE To optimize the prescription pre-review system in our hospital and evaluate its application effects. METHODS Aiming at the problems of imperfect rule base and high false positive rate in the early operation of the system, optimization measures were taken, including improving the content of the rule base, adjusting the interception level and prompt mode, refining the working model of prescription review pharmacists, and strengthening clinical communication. A retrospective cohort study was conducted, with prescription data from June to December 2023 (before optimization) as the control group and June to December 2024 (after optimization) as the observation group. Through inter group comparative analysis, the actual effect of optimizing the prescription pre-approval system was evaluated. RESULTS The prescription qualified rate increased from (82.51± 4.04)% before optimization to (90.98±1.55)% after optimization; the false positive rate decreased from (20.87±1.64)% before optimization to (7.41±2.04)% after optimization. The monthly range of prescription qualified rate narrowed from 10.24% to 4.11%, and the coefficient of variation decreased from 4.92% to 1.73%. The monthly range of false positive rate slightly increased from 4.40% to 5.34%, the coefficient of variation rose from 8.32% to 26.18%. CONCLUSIONS Through multi-dimensional optimizations of the prescription pre-review system in our hospital, its prescription review efficiency has been significantly enhanced, the quality of prescriptions has steadily improved, and the accuracy of reviews has notably improved.
		                        		
		                        		
		                        		
		                        	
3.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
		                        		
		                        			
		                        			ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts. 
		                        		
		                        		
		                        		
		                        	
4.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
		                        		
		                        			
		                        			ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children. 
		                        		
		                        		
		                        		
		                        	
5.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
		                        		
		                        			
		                        			ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children. 
		                        		
		                        		
		                        		
		                        	
6.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
		                        		
		                        			
		                        			Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management. 
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics. 
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system. 
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
		                        		
		                        		
		                        		
		                        	
7.Overview of the Research on Mechanisms and Application of Essential Oil of Aromatic Chinese Medicinals in Prevention of Respiratory Infectious Disease
Wan Ling LI ; Xinxin WU ; Xiaolei LI ; Mingzhao HAO ; Fang ZHANG ; Yue ZHANG ; Haoyue LI ; Jing ZHAO
Journal of Traditional Chinese Medicine 2025;66(6):638-644
		                        		
		                        			
		                        			Aromatic Chinese medicinal essential oils are volatile oils extracted from aromatic Chinese herbs, which can prevent and treat respiratory infectious diseases through multiple synergistic mechanisms including pathogen inhibition, immune regulation, and inflammatory response regulation. Essential oils are primarily used externally on the body to prevent infections and alleviate symptoms through methods like inhalation, smearing, topical application, bathing, gargling or as a suppository. They can also be utilized in the environment for disinfection and air purification, through methods like diffusion, vaporization, or spraying. The external application of essential oils extracted from Chinese aromatic herbs has the advantages of convenience, quick absorption, and simultaneous influence on both the body and mind. However, there are still challenges and deficiencies in aspects such as the positioning of functions, indications, safety, and the research on the mechanism of action. It has been proposed to combine the theory of aromatic Chinese medicinals with the characteristics of essential oils, and formulate prescriptions of Chinese medicinal essential oils under the principles of traditional Chinese medicine syndrome differentiation, and prevent and treat respiratory infectious diseases efficiently, accurately, and safely, thereby expanding the clinical application of aromatic Chinese medicinals and the preventive theory of traditional Chinese medicine. 
		                        		
		                        		
		                        		
		                        	
8.Jianpi Yiqi Prescription Inhibits Proliferation and Invasion of Hepatic Carcinoma Cells by Targeting PTPN1
Shanshan SUN ; Jing HONG ; Shufan SONG ; Zongxi SUN ; Chao WANG ; Shaoyuan ZHUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):80-88
		                        		
		                        			
		                        			ObjectiveTo investigate the key targets of Jianpi Yiqi prescription (JYP) in the treatment of hepatocellular carcinoma (HCC) based on network pharmacology and explore the effect of JYP on the invasion and proliferation of hepatocellular carcinoma cells via protein tyrosine phosphatase, non-receptor type 1 (PTPN1) by bioinformatics analysis and CRISPR/Cas9. MethodsThe potential targets of JYP in the treatment of HCC were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), SwissTargetPrediction, GeneCards, NCBI, and CTD. Additionally, the active components of JYP that could interact with PTPN1 were screened out, and then molecular docking between the targets and active components was performed in Autodock 4.0. UALCAN, HPA, and LinkedOmics were used to analyze the expression of PTPN1 in the HCC tissue, and the relationship of PTPN1 expression with the overall survival (OS) of HCC patients was discussed. CRISPR/Cas9 was used to knock down the expression of PTPN1 in HepG2 and SK-hep-1 cells, and the knockdown effect was examined by sequencing, Real-time PCR, and Western blot. HepG2 cells were classified into blank control, low-, medium-, and high-dose JYP (5.25, 10.5, 21 g·kg-1), and PTPN1 knockout groups. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of PTPN1 in HepG2 cells of each group. The effects of JYP and PTPN1 knockdown on the proliferation, invasion, and apoptosis of HepG2 cells were detected by Cell Counting Kit-8 (CCK-8), Transwell, and Annexin V-FITC/PI methods, respectively. ResultsJYP had the most active components targeting PTPN1, and 31 of the active components had the binding energy less than -5.0 kcal·mol-1 in molecular docking. The mRNA and protein levels of PTPN1 in the HCC tissue were higher than those in the normal tissue (P<0.01). Compared with that in the normal tissue, the mRNA level of PTPN1 in the HCC tissue was up-regulated at the pathological stages Ⅰ-Ⅲ and grades G1-G3 (P<0.01), and it was not significantly up-regulated at the stage Ⅳ or grade G4. The mRNA level of PTPN1 in the TP53-mutated HCC tissue was higher than that in the TP53-unmutated HCC tissue (P<0.01). The high mRNA level of PTPN1 was associated with the OS reduction (P<0.01). After treatment with the JYP-containing serum or knockdown of PTPN1, HepG2 cells demonstrated decreased proliferation and invasion and increased apoptosis (P<0.01). ConclusionPTPN1 may be one of the core targets of JYP in the treatment of HCC. It is highly expressed in the HCC tissue and cells, which is associated with the poor prognosis of patients. The expression level of PTPN1 is significantly up-regulated in the HCC tissue of the patients with TP53 mutation. However, TP53 mutation or deletion does not affect the expression of PTPN1 in HCC cells. JYP can significantly down-regulate the expression of PTPN1 to inhibit the proliferation and invasion and promote the apoptosis of HCC cells. 
		                        		
		                        		
		                        		
		                        	
9.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
		                        		
		                        			
		                        			ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers. 
		                        		
		                        		
		                        		
		                        	
10.Mechanism of Feibi prescription on mitochondrial apoptosis of alveolar epithelial cells in mice with pulmonary fibrosis
Xue CHENG ; Huanxi JING ; Yunke ZHANG ; Hong FANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2334-2339
		                        		
		                        			
		                        			BACKGROUND:Studies have shown that mitochondrial apoptosis of alveolar epithelial cells plays an important role in the pathogenesis of pulmonary fibrosis,and Feibi prescription can attenuate pulmonary fibrosis and inhibit the transformation of extracellular mechanisms in mice with pulmonary fibrosis. OBJECTIVE:To investigate the mechanism of Feibi prescription on mitochondrial apoptpsis of alveolar epithelial cells in bleomycin induced pulmonary fibrosis mice. METHODS:Forty male C57BL/6 mice were randomly divided into blank control group,model group,pirfenidone group,and Feibi prescription group.There were 10 mice in each group.Except for the blank control group,the other three groups were intraperitoneally injected with bleomycin(7.5 mg/kg per day)for 10 continuous days to establish the model of pulmonary fibrosis.On day 1 after modeling,the mice in corresponding drug groups were intragastrically administered with pirfenidone(51.43 mg/kg per day)or Feibi prescription(12.86 mg/kg per day).Drug administration lasted for 28 days.Then,morphological changes of lung tissue in mice were observed by hematoxylin-eosin staining and Masson staining.The levels of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 in the serum were detected by ELISA,and the expression of Bax,Bcl-2,Beclin-1,and Caspase3 in the lung tissue was detected by western blot assay. RESULTS AND CONCLUSION:Morphological observation of lung tissue showed that in the model group,the alveolar septum and alveolar lumen were infiltrated with a large number of inflammatory cells,and there were large clusters of fibrous foci;in the pirfenidone group,alveolar septa were thickened,with a small infiltration of inflammatory cells and the appearance of pulmonary fibrous foci;in the Feibi prescription group,the alveolar structure was widened,with a small amount of inflammatory cell infiltration,and the alveolar structure was almost not obviously damaged,with a small number of lung fibrous foci.Compared with the blank control group,the mass concentrations of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 were significantly higher in the model group(P<0.01),while the levels were significantly lower in the two drug groups than the model group(P<0.01).Moreover,the mass concentrations of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 in the Feibi prescription group were lower than those in the pirfenidone group.Compared with the blank control group,the expression of Bax and Caspase3 proteins in the lung tissue of mice was significantly higher in the model group,while the expression of Bax and Caspase3 proteins was significantly lower in the two drug groups than the model group.Compared with the blank control group,the expression of Bcl-2 and Beclin-1 proteins in the lung tissue of mice was significantly lower in the model group,while the expression of Bcl-2 and Beclin-1 proteins was significantly higher in the two drug groups than the model group.To conclude,Feibi prescription can reduce pulmonary fibrosis and its mechanism may be related to the downregulation of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 levels.This prescription can also reduce the apoptosis of alveolar epithelial cells by regulating mitochondrial apoptosis-related proteins,Bax,Bcl-2,Beclin-1 and Caspase3.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail