1.Analysis of clinical phenotype and variant of RAG1 gene in a child with B-cell-negative Severe Combined Immunodeficiency.
Juan HUANG ; Xiaofeng GUO ; Wei JI
Chinese Journal of Medical Genetics 2023;40(2):238-241
		                        		
		                        			OBJECTIVE:
		                        			To report on a child with B-cell-negative severe combined immunodeficiency (B-SCID) manifesting as fulminant myocarditis and carry out genetic testing for her.
		                        		
		                        			METHODS:
		                        			A child with B-SCID who presented at Fujian Maternity and Child Health Care Hospital on January 31, 2021 was selected as the subject. Whole exome sequencing was carried out for her. Candidate variant was verified by Sanger sequencing.
		                        		
		                        			RESULTS:
		                        			The female infant had developed recurrent skin and lung infections soon after birth, and was admitted due to fulminant myocarditis. Serological examination has disclosed a remarkable reduction in immunoglobulins. Flow cytometric analysis revealed that her peripheral blood T and B lymphocytes and NK cells were significantly reduced. Whole exome sequencing revealed that she has harbored a homozygous c.C3007T (p.Q1003X) nonsense variant of the RAG1 gene, for which both of her parents were heterozygous carriers. The variant has not been recorded in normal population databases. Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was predicted to be pathogenic.
		                        		
		                        			CONCLUSION
		                        			A case of RAG1 gene associated B-SCID has been diagnosed. Above finding has enriched the spectrum of RAG1 gene variants and enabled early diagnosis and intervention of the disease.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Genetic Testing
		                        			;
		                        		
		                        			Homeodomain Proteins/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Myocarditis/genetics*
		                        			;
		                        		
		                        			Phenotype
		                        			;
		                        		
		                        			Severe Combined Immunodeficiency/diagnosis*
		                        			;
		                        		
		                        			Infant
		                        			
		                        		
		                        	
2.A case of dilated cardiomyopathy caused by FHL2 gene variant and a literature review.
Chunrui YU ; Lijuan JIA ; Chanjuan HAO ; Bianjing ZUO ; Wei LI ; Fangjie WANG ; Jun GUO
Chinese Journal of Medical Genetics 2023;40(3):337-343
		                        		
		                        			OBJECTIVE:
		                        			To explore the clinical phenotype and genetic features of a child with dilated cardiomyopathy (DCM).
		                        		
		                        			METHODS:
		                        			Clinical data of the child who had presented at the Zhengzhou Children's Hospital on April 28, 2020 was collected. Trio-whole exome sequencing (trio-WES) was carried out for the child and her parents, and candidate variants were validated by Sanger sequencing. "FHL2" was taken as the key word to retrieve related literature from January 1, 1997 to October 31, 2021 in the PubMed database and was also searched in the ClinVar database as a supplement to analyze the correlation between genetic variants and clinical features.
		                        		
		                        			RESULTS:
		                        			The patient was a 5-month-old female infant presented with left ventricular enlargement and reduced systolic function. A heterozygous missense variant c.391C>T (p.Arg131Cys) in FHL2 gene was identified through trio-WES. The same variant was not detected in either of her parents. A total of 10 patients with FHL2 gene variants have been reported in the literature, 6 of them had presented with DCM, 2 with hypertrophic cardiomyopathy (HCM), and 2 with sudden unexplained death (SUD). Phenotypic analysis revealed that patients with variants in the LIM 3 domain presented hypertrophic cardiomyopathy and those with variants of the LIM 0~2 and LIM 4 domains had mainly presented DCM. The c.391C>T (p.Arg131Cys) has been identified in a child with DCM, though it has not been validated among the patient's family members. Based on the guidelines of the American College of Medical Genetics and Genomics, the c.391C>T(p.Arg131Cys) variant was re-classified as likely pathogenic (PS2+PM2_Supporting+PP3+PP5).
		                        		
		                        			CONCLUSION
		                        			The heterozygous missense variant of c.391C>T (p.Arg131Cys) in the FHL2 gene probably predisposed to the DCM in this child, which has highlighted the importance of WES in the clinical diagnosis and genetic counseling.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Cardiomyopathy, Dilated/genetics*
		                        			;
		                        		
		                        			Cardiomyopathy, Hypertrophic
		                        			;
		                        		
		                        			Genetic Counseling
		                        			;
		                        		
		                        			Genomics
		                        			;
		                        		
		                        			Heterozygote
		                        			;
		                        		
		                        			Muscle Proteins/genetics*
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			LIM-Homeodomain Proteins/genetics*
		                        			
		                        		
		                        	
3.Helsmoortel-Van der Aa syndrome due to hotspot mutation of ADNP gene and a literature review.
Xiu ZHAO ; Zhe SU ; Zhongwei XU ; Huiping SU ; Rongfei ZHENG
Chinese Journal of Medical Genetics 2023;40(11):1382-1386
		                        		
		                        			OBJECTIVE:
		                        			To summarize the clinical features and biological characteristics of Helsmoortel Van der Aa syndrome (HVDAS) due to hotspot mutations of the ADNP gene in order to facilitate early diagnosis.
		                        		
		                        			METHODS:
		                        			Clinical data and result of genetic testing for a girl with HVDAS due to hotspot mutation of the ADNP gene was summarized. Related literature was also reviewed.
		                        		
		                        			RESULTS:
		                        			The patient, a 2-year-old girl, had presented with growth retardation, facial dysmorphism, psychomotor and language delay and recurrent respiratory infections. Whole exome sequencing revealed that she has harbored a heterozygous c.2496_2499delTAAA (p.Asn832Lysfs*81) variant of the ADNP gene, which was not found in either of her parents.
		                        		
		                        			CONCLUSION
		                        			Although the typical features of the HVDAS have included intellectual disability and autism spectrum disorders, growth retardation and premature primary tooth eruption may also be present. In addition, the phenotypic difference among individuals carrying hot spot variants of the ADNP gene was not prominent.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Intellectual Disability/genetics*
		                        			;
		                        		
		                        			Homeodomain Proteins/genetics*
		                        			;
		                        		
		                        			Nerve Tissue Proteins/genetics*
		                        			;
		                        		
		                        			Abnormalities, Multiple/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Rare Diseases
		                        			;
		                        		
		                        			Growth Disorders/genetics*
		                        			
		                        		
		                        	
4.Effect of Inhibiting SIX1 Expression on Drug-resistance of Acute Myeloid Leukemia Cell Line HL-60/ADR Cells.
Li-Yuan LI ; Zi-Yuan NIE ; Xiao-Yan ZHANG ; Jian-Min LUO ; Lin YANG ; Qian WANG
Journal of Experimental Hematology 2023;31(4):1038-1043
		                        		
		                        			OBJECTIVE:
		                        			To establish HL-60 cells and adriamycin resistant HL-60 cells (H-60/ADR) in which the expression of homologous box gene 1 (SIX1) was inhibited, and investigate the effect of inhibiting the expression of SIX1 on the drug resistance.
		                        		
		                        			METHODS:
		                        			Lentivirus was used to transfect HL-60 and HL-60/ADR cells, and the cell lines stably inhibiting the expression of SIX1 were screened by puromycin. CCK-8 assay was used to detect the proliferation ability of cells in each group, apoptosis kit was used to detect the cell apoptosis, and real-time quantitative PCR was used to detect the expression level of drug-resistant related genes.
		                        		
		                        			RESULTS:
		                        			HL-60 and HL-60/ADR stably transfected cell lines with down-regulation of SIX1 expression were successfully constructed. Compared with control group, the inhibition of SIX1 expression significantly inhibited the proliferation of HL-60 and HL-60/ADR cells (P <0.05), increased the apoptosis rate (P <0.05), and the sensitivity of cells to adriamycin increased after inhibition of SIX1 expression.
		                        		
		                        			CONCLUSION
		                        			Inhibition of SIX1 expression can improve cell sensitivity to adriamycin, and its role in reversing drug resistance may be related to the promotion of apoptosis gene expression.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			HL-60 Cells
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm/genetics*
		                        			;
		                        		
		                        			Leukemia, Myeloid, Acute
		                        			;
		                        		
		                        			Doxorubicin/pharmacology*
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Homeodomain Proteins/genetics*
		                        			
		                        		
		                        	
5.Characterization of Cell Subsets Associated With Prognosis of Osteosarcoma Based on Single-Cell Sequencing Data.
Sheng-Tao WANG ; Hao-Ran ZHU ; Shu-Juan XU ; Peng GUI ; Ming-Zhou CHEN ; Zhao-Xu LI
Acta Academiae Medicinae Sinicae 2023;45(5):773-782
		                        		
		                        			
		                        			Objective To explore the cell subsets and characteristics related to the prognosis of osteosarcoma by analyzing the cellular composition of tumor tissue samples from different osteosarcoma patients.Methods The single-cell sequencing data and bulk sequencing data of different osteosarcoma patients were downloaded.We extracted the information of cell samples for dimensionality reduction,annotation,and cell function analysis,so as to identify the cell subsets and clarify the cell characteristics related to the prognosis of osteosarcoma.The development trajectory of macrophages with prognostic significance was analyzed,and the prognostic model of osteosarcoma was established based on the differentially expressed genes of macrophage differentiation.Results The cellular composition presented heterogeneity in the patients with osteosarcoma.The infiltration of mononuclear phagocytes in osteosarcoma had prognostic significance(P=0.003).Four macrophage subsets were associated with prognosis,and their signature transcription factors included RUNX3(+),ETS1(+),HOXD11(+),ZNF281(+),and PRRX1(+).Prog_Macro2 and Prog_Macro4 were located at the end of the developmental trajectory,and the prognostic ability of macrophage subsets increased with the progression of osteosarcoma.The prognostic model established based on the differentially expressed genes involved in macrophage differentiation can distinguish the survival rate of osteosarcoma patients with different risks(P<0.001).Conclusion Macrophage subsets are closely related to the prognosis of osteosarcoma and can be used as the key target cells for the immunotherapy of osteosarcoma.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			Osteosarcoma/genetics*
		                        			;
		                        		
		                        			Immunotherapy
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			Bone Neoplasms/genetics*
		                        			;
		                        		
		                        			Homeodomain Proteins
		                        			;
		                        		
		                        			Repressor Proteins
		                        			
		                        		
		                        	
6.Genome-wide analysis of AP2/ERF superfamily in Isatis indigotica.
Liang XIAO ; Jun-Ze REN ; Qing LI ; Bin YANG ; Zhen-Jiang LIU ; Rui-Bing CHEN ; Lei ZHANG
Journal of Integrative Medicine 2023;21(1):77-88
		                        		
		                        			OBJECTIVE:
		                        			AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering.
		                        		
		                        			METHODS:
		                        			To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses.
		                        		
		                        			RESULTS:
		                        			One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses.
		                        		
		                        			CONCLUSION
		                        			This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.
		                        		
		                        		
		                        		
		                        			Abscisic Acid
		                        			;
		                        		
		                        			Isatis/genetics*
		                        			;
		                        		
		                        			Multigene Family
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Homeodomain Proteins/genetics*
		                        			;
		                        		
		                        			Genome, Plant
		                        			
		                        		
		                        	
7.miRNA-181a-5p inhibits proliferation and migration of osteosarcoma cell line HOS by targeting HOXB4.
Jia-Xi LI ; Xi-Jing HE ; Fei LI ; Yu-Tian LEI ; Yu-Bing YANG ; Jing LI ; Gao-Yang ZONG ; Min-Chao ZHAO ; Su-E CHANG
China Journal of Orthopaedics and Traumatology 2022;35(11):1097-1103
		                        		
		                        			OBJECTIVE:
		                        			To study the effects and mechanisms of miR-181a-5p on the proliferation, cycle and migration of HOS osteosarcoma cells.
		                        		
		                        			METHODS:
		                        			Real-time quantitative PCR was used to detect the expression of miR-181a-5p and HOXB4 in osteoblast hFOB1.19 cell line and osteosarcoma cell lines (HOS, U2OS, MG63). miR-181a-5p mimics and miR-181a-5p inhibitors were respectively transfected into HOS cells by Lipofectamine 2000, and miR NC group was set as control group. CCK-8 method was used to detect the change in cell proliferation. Flow cytometry was used to detect the changes in cell cycles. Wound healing experiments and Transwell migration experiments were used to detect the changes in cell migration ability. The target gene of miR-181a-5p was predicted by Targetscan website and validated by Dual-luciferase reporter gene system and Western blot.
		                        		
		                        			RESULTS:
		                        			Compared with osteoblast hFOB1.19, miR-181a-5p was low expressed in osteosarcoma cells HOS, U2OS, and MG63(P<0.05), while HOXB4 was high expressed in osteosarcoma cells HOS, U2OS, and MG63(P<0.05). Compared with the miR NC group, over expression of miR-181a-5p inhibited the proliferation and migration of osteosarcoma HOS cells, and the number of cells in S phase decreased(P<0.05). However, knockdown miR-181a-5p promoted the proliferation and migration of osteosarcoma HOS cells, the cells in S phase increased(P<0.05). Bioinformatics prediction and Dual-luciferase reporter gene system validate HOXB4 as a downstream target gene of miR-181a-5p(P<0.05). Western blot showed that miR-181a-5p over expression or knockdown significantly down-regulated or up-regulated HOXB4 expressions in the HOS cells respectively(P<0.05).
		                        		
		                        			CONCLUSION
		                        			miR-181a-5p is down expressed in osteosarcoma cells, and over-expression miR-181a-5p inhibits the proliferation, cell cycle and migration ability of osteosarcoma cells by targeting HOXB4.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Bone Neoplasms/genetics*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/genetics*
		                        			;
		                        		
		                        			Homeodomain Proteins/genetics*
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Osteosarcoma/genetics*
		                        			;
		                        		
		                        			Transcription Factors/genetics*
		                        			
		                        		
		                        	
8.Analysis of clinical features and ADNP variant in a child with Helsmoortel-Van der Aa syndrome.
Wei SHEN ; Wei CHEN ; Juan LU ; Haoquan ZHOU
Chinese Journal of Medical Genetics 2022;39(9):1001-1004
		                        		
		                        			OBJECTIVE:
		                        			To analyze the clinical characteristics and genetic etiology of a child with Helsmoortel-Van der Aa syndrome (HVDAS).
		                        		
		                        			METHODS:
		                        			Genetic testing was carried out for the child and his parents, and the clinical phenotypes and genetic variants of reported cases were summarized through literature review.
		                        		
		                        			RESULTS:
		                        			The child has featured peculiar facies, accompanied by autism spectrum disorder, intellectual disability and motor retardation, and curving of the second toes, which was unreported previously. Genetic testing revealed that the child has harbored a heterozygous c.2157C>G (p.Tyr719*) variant of the ADNP gene, which was not found in either parent. Based on the guidelines of the American College of Medical Genetics and Genomics, this variant was rated as pathogenic. Among 80 HVDAS cases described in the literature, most had various degrees of behavioral abnormalities, intellectual disability, language retardation and motor retardation, with common features involving the nervous system, gastrointestinal system and eye. Variants of the ADNP gene mainly included frameshift variants and nonsense variants, with the hotspot variants including p.Tyr719*, p.Asn832lysfs*81 and p.Arg730*.
		                        		
		                        			CONCLUSION
		                        			The clinical phenotype of the child is closely correlated with the heterozygous variant of the ADNP gene, which expanded the phenotypic spectrum of HVDAS. As HVDAS may involve multiple systems and have high phenotypic heterogeneity, genetic testing technology can facilitate accurately diagnose.
		                        		
		                        		
		                        		
		                        			Abnormalities, Multiple/genetics*
		                        			;
		                        		
		                        			Autism Spectrum Disorder/genetics*
		                        			;
		                        		
		                        			Autistic Disorder/genetics*
		                        			;
		                        		
		                        			Homeodomain Proteins/genetics*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Intellectual Disability/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Nerve Tissue Proteins/genetics*
		                        			;
		                        		
		                        			Rare Diseases/complications*
		                        			
		                        		
		                        	
9.The effect of HOXC10 gene on biological behaviors of glioma cells and mechanism in tumor microenvironment.
Wen Yi JIANG ; Qing Yang LEI ; Sha Sha LIU ; Li YANG ; Bo YANG ; Yi ZHANG
Chinese Journal of Oncology 2022;44(3):228-237
		                        		
		                        			
		                        			Objective: To study the effects of Homeobox C10 (HOXC10) on biological characteristics such as migration, invasion and proliferation of glioma cancer cells and to explore the role of HOXC10 gene in glioma microenvironment. Methods: The expression level of HOXC10 in high grade glioma (glioblastoma) and low grade glioma and its effect on patient survival were analyzed by using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Hoxc10-siRNA-1, HOXC10-siRNA-2 and siRNA negative control (NC) were transfected into U251 cells according to the operation instructions of HOXC10-siRNA transfection. 100 ng/ mL recombinant protein chemokine ligand 2 (reCCL2) was added into the transfection group, and was labeled as HOXC10-siRNA-1+ reCCL2 and HOXC10-siRNA-2+ reCCL2 groups. The expressions of HOXC10 mRNA and target protein in each group was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot. The proliferation ability of cells in each group was detected by cell counting kit 8 (CCK8) method. The migration ability of cells was detected by Transwell assay and Nick assay, and cell apoptosis was detected by flow cytometry. The expression of chemokines in each group was detected by multiple factors. Co-incubation assays were performed to determine the role of HOXC10 and chemokine ligand 2 (CCL2) in recruiting and polarizing tumor-associated macrophages (M2-type macrophages). Results: The median expression level of HOXC10 in high grade gliomas was 8.51, higher than 1.00 in low grade gliomas (P<0.001) in TCGA database. The median expression level of HOXC10 in high grade gliomas was 0.83, higher than 0.00 in low grade gliomas (P=0.002) in CGGA database. The 5-year survival rate of patients with high HOXC10 expression in TCGA database was 28.2%, lower than 78.7% of those with low HOXC10 expression (P<0.001), and the 5-year survival rate of patients with high HOXC10 expression in CGGA database was 20.3%, lower than 58.0% of those with low HOXC10 expression (P<0.001). The numbers of cell migration in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (45±3) and (69±4) respectively, lower than (159±3) in NC group (P<0.05). The cell mobility of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group at 48 hours were (15±2)% and (28±4)% respectively, lower than (80±5)% of NC group (P<0.05). The expressions of vimentin in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (141 740.00±34 024.56) and (94 655.00±5 687.97), N-cadherin were (76 810.00±14.14) and (94 254.00±701.45), β-catenin were (75 786.50±789.84) and (107 296.50±9 614.53), lower than (233 768.50±34 114.37), (237 154.50±24 715.50) and (192 449.50±24 178.10) of NC group (P<0.05). The A value of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.44±0.05) and (0.32±0.02) at 96 hours, lower than 0.92±0.12 of NC group (P<0.05). The apoptosis rates of HOXC10-siRNA-1 group and HOXC10 siRNA-2 group were (10.23±1.24)% and (13.81±2.16)%, higher than (4.60±0.07)% of NC group (P<0.05). The expression levels of CCL2 in U251 cells in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (271.63±44.27) and (371.66±50.21), lower than (933.93±29.84) in NC group (P<0.05). The expression levels of CCL5 (234.81±5.95 and 232.62±5.72), CXCL10 (544.13±48.14 and 500.87±15.65) and CXCL11 (215.75±15.30 and 176.18±16.49) in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were higher than those in NC group (9.98±0.71, 470.54±18.84 and 13.55±0.73, respectively, P<0.05). The recruited numbers of CD14(+) THP1 in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (159.33±1.15) and (170.67±1.15), respectively, lower than (360.00±7.81) in NC group (P<0.05), while addition of reCCL2 promoted the recruitment of CD14(+) THP1 cells (287.00±3.61 and 280.67±2.31 in HOXC10-siRNA-1+ reCCL2 group and HOXC10-siRNA-2+ reCCL2 group, respectively, P<0.05). The expressions level of M2-type macrophage-related gene TGF-β in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.30±0.02) and (0.28±0.02), respectively, lower than (1.06±0.10) in NC group (P<0.05). The expressions level of M1-related gene NOS2 in HOXC10-siRNA-1 and HOXC10-siRNA-2 were (11 413.95±1 911.85) and (5 894.00±945.21), respectively, higher than (13.39±4.32) in NC group (P<0.05). Conclusions: The expression of HOXC10 in glioma is high and positively correlated with the poor prognosis of glioma patients. Knockdown of HOXC10 can inhibit the proliferation, migration and metastasis of human glioma U251 cells. HOXC10 may play an immunosuppressive role in glioma microenvironment by promoting the expression of CCL2 and recruiting and polarizing tumor-associated macrophages (M2 macrophages).
		                        		
		                        		
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/genetics*
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Genes, Homeobox
		                        			;
		                        		
		                        			Glioma/pathology*
		                        			;
		                        		
		                        			Homeodomain Proteins/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasm Invasiveness/genetics*
		                        			;
		                        		
		                        			Tumor Microenvironment
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail