1.Research progress of histone 3 methyltransferase MLL4.
Hui-Hui GUO ; Sheng-Feng LU ; Yun CAI ; Shu-Bao LIU ; Bing-Mei ZHU
Acta Physiologica Sinica 2019;71(4):637-644
Mixed linked leukemia 4 (MLL4) is a specific methyltransferase of histone 3 position lysine 4 (H3K4). It is also one of the important members of COMPASS/Set1-like protein complex. Both MLL4 protein itself and its mediated H3K4 methylation modification can cause changes in chromatin structure and function, thus regulating gene transcription and expression. With the studies of MLL4 protein in recent years, the roles of MLL4 gene, MLL4 protein and protein complex in the development of tissues and organs, tumor diseases and other physiological and pathophysiological processes have been gradually revealed. In this paper, the research progress of MLL4 gene, MLL4 protein characteristics, biological function and its effect on disease were reviewed, in order to further understand the effect of histone methyltransferase on gene expression regulation, as well as its non-enzyme dependent function. This paper may provide new ideas for the prevention, diagnosis and treatment of related diseases.
DNA-Binding Proteins
;
physiology
;
Histone-Lysine N-Methyltransferase
;
physiology
;
Histones
;
chemistry
;
Humans
;
Methylation
2.Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation.
Zi-Gang ZHANG ; Xin WANG ; Jin-Hai ZAI ; Cai-Hua SUN ; Bing-Chun YAN
Chinese journal of integrative medicine 2018;24(5):366-371
OBJECTIVETo examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level.
METHODSThe modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus.
RESULTSCompared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05).
CONCLUSIONICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Acetylation ; Acetylcholine ; metabolism ; Animals ; Brain Injuries, Traumatic ; complications ; Choline O-Acetyltransferase ; genetics ; metabolism ; Cognitive Dysfunction ; drug therapy ; etiology ; Flavonoids ; chemistry ; pharmacology ; therapeutic use ; Hippocampus ; pathology ; Histones ; metabolism ; Homeostasis ; drug effects ; Male ; Maze Learning ; drug effects ; Mice ; RNA, Messenger ; genetics ; metabolism
3.Improved protein-A chromatography for monoclonal antibody purification.
Quan CHEN ; Phyllicia TOH ; Aina HOI ; Mo XIAN ; Xinying PENG ; Yuansheng YANG ; Haibo ZHANG ; Rui NIAN ; Wei ZHANG
Chinese Journal of Biotechnology 2016;32(6):807-818
Therapeutic monoclonal antibodies become the major product class within the biopharmaceutical market. Protein A as the first capture step is still dominant in current platforms for purification of monoclonal antibodies. In this study, we developed a new antibody harvest process that incorporates acidic treatment of cell harvest, demonstrating high process yield, improved clearance of host cell associated contaminants, like non-histone host cell protein, histone, DNA and heteroaggregates. Host protein contamination was reduced about 10-fold compared to protein A loaded with harvest clarified by centrifugation and microfiltration. Turbidity increase of eluted IgG upon pH neutralization was nearly eliminated. Residual levels of impurities in the protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. The mechanism of host cell associated contaminants removal during acidic treatment was also explored. After a polishing step by Capto adhere, host cell protein was reduced to less than 5 ppm, DNA less than 1 ppb, histone to undetectable level, heteroaggregates less than 0.01% with total IgG recovery around 87%. This efficient process can be easily integrated into current IgG purification platforms, and may overcome downstream processing challenges.
Antibodies, Monoclonal
;
isolation & purification
;
Biotechnology
;
Chromatography, Affinity
;
DNA
;
Histones
;
Hydrogen-Ion Concentration
;
Immunoglobulin G
;
isolation & purification
;
Staphylococcal Protein A
;
chemistry
4.Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.
Eunjo LEE ; Min Ji SONG ; Hae Ahm LEE ; Seol Hee KANG ; Mina KIM ; Eun Kyoung YANG ; Do Young LEE ; Seonggu RO ; Joong Myung CHO ; Inkyeom KIM
The Korean Journal of Physiology and Pharmacology 2016;20(5):477-485
CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.
Animals
;
Blood Pressure
;
Body Weight
;
Cardiomegaly*
;
Chemistry
;
Cholesterol
;
Connective Tissue Growth Factor
;
Desoxycorticosterone
;
Desoxycorticosterone Acetate
;
Drinking Water
;
Eosine Yellowish-(YS)
;
Fibronectins
;
Fibrosis*
;
Glucose
;
Heart
;
Hematoxylin
;
Histone Deacetylase Inhibitors*
;
Histone Deacetylases*
;
Histones*
;
Hypertension
;
Methods
;
Potassium
;
Rats*
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Relaxation
;
Sodium
;
Triglycerides
5.Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome.
Zhuoya GU ; Ke JIN ; M James C CRABBE ; Yang ZHANG ; Xiaolin LIU ; Yanyan HUANG ; Mengyi HUA ; Peng NAN ; Zhaolei ZHANG ; Yang ZHONG
Protein & Cell 2016;7(4):250-266
Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C (chromosome conformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r = 0.9, P < 2.2 × 10(16); IMR90 fibroblasts: r = 0.94, P < 2.2 × 10(16)) and also have a significant positive correlation with some remote functional DNA elements like enhancers and promoters (Enhancer: hESC: r = 0.997, P = 2.3 × 10(-4); IMR90: r = 0.934, P = 2 × 10(-2); Promoter: hESC: r = 0.995, P = 3.8 × 10(-4); IMR90: r = 0.996, P = 3.2 × 10(-4)). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes.
Alu Elements
;
genetics
;
Base Composition
;
Binding Sites
;
Cell Line
;
Chromatin
;
chemistry
;
genetics
;
metabolism
;
CpG Islands
;
DNA
;
metabolism
;
Databases, Genetic
;
Enhancer Elements, Genetic
;
genetics
;
Genome, Human
;
Histones
;
metabolism
;
Humans
;
Methylation
6.The BAH domain of BAHD1 is a histone H3K27me3 reader.
Dan ZHAO ; Xiaojie ZHANG ; Haipeng GUAN ; Xiaozhe XIONG ; Xiaomeng SHI ; Haiteng DENG ; Haitao LI
Protein & Cell 2016;7(3):222-226
7.Structural studies on MRG701 chromodomain reveal a novel dimerization interface of MRG proteins in green plants.
Yanchao LIU ; Hong WU ; Yu YU ; Ying HUANG
Protein & Cell 2016;7(11):792-803
MRG proteins are conserved during evolution in fungi, flies, mammals and plants, and they can exhibit diversified functions. The animal MRGs were found to form various complexes to activate gene expression. Plant MRG1/2 and MRG702 were reported to be involved in the regulation of flowering time via binding to H3K36me3-marked flowering genes. Herein, we determined the crystal structure of MRG701 chromodomain (MRG701). MRG701 forms a novel dimerization fold both in crystal and in solution. Moreover, we found that the dimerization of MRG chromodomains is conserved in green plants. Our findings may provide new insights into the mechanism of MRGs in regulation of gene expression in green plants.
Amino Acid Sequence
;
Arabidopsis
;
genetics
;
metabolism
;
Arabidopsis Proteins
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Chromosomal Proteins, Non-Histone
;
chemistry
;
genetics
;
metabolism
;
Cloning, Molecular
;
Crystallography, X-Ray
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Histones
;
chemistry
;
genetics
;
metabolism
;
Models, Molecular
;
Oryza
;
genetics
;
metabolism
;
Peptides
;
chemistry
;
genetics
;
metabolism
;
Protein Binding
;
Protein Interaction Domains and Motifs
;
Protein Isoforms
;
chemistry
;
genetics
;
metabolism
;
Protein Multimerization
;
Protein Structure, Secondary
;
Recombinant Proteins
;
chemistry
;
genetics
;
metabolism
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Viridiplantae
;
genetics
;
metabolism
8.Increased Egr-1 binding to promoter induced by histone hyperacetylation promotes gdnf gene transcription.
Zhouru LI ; Jie LIU ; Yu LEI ; Haibo NI ; Hongxing CAI ; Baole ZHANG
Journal of Southern Medical University 2015;35(5):697-701
OBJECTIVETo investigate the mechanism of high transcription of the glial cell-line derived neurotrophic factor (gdnf) gene induced by hyperacetylation of histone H3 lysine 9 (H3K9) at its promoter region II in rat C6 glioma cells.
METHODSThe acetylation level of H3K9 at Egr-1 binding site in gdnf gene promoter region II and the binding capacity of Egr-1 to its binding site in gdnf promoter were examined by ChIP-PCR in C6 astroglioma cells and normal rat astrocytes, and its changes were investigated in C6 astroglioma cells after treatment with histone acetyltransferase inhibitor curcumin or deacetylase inhibitor trichostatin A.
RESULTSCompared normal astrocytes, C6 astroglioma cells showed significantly increased acetylation level of H3K9 at Egr-1 binding site in gdnf gene promoter region II and Egr-1 binding capacity (P<0.01). Curcumin treatment significantly reduced H3K9 acetylation level at Egr-1 binding site and decreased both the binding of Egr-1 to promoter region II and gdnf mRNA levels in C6 astroglioma cells (P<0.05). Conversely, increased H3K9 acetylation at the Egr-1 binding site induced by trichostatin A significantly increased the binding of Egr-1 to promoter region II and gdnf mRNA expression levels (P<0.05).
CONCLUSIONH3K9 hyperacetylation induces increased Egr-1 binding to gdnf gene promoter II, which might be the reason for the high transcription level of gdnf gene in rat C6 glioma cells.
Acetylation ; Animals ; Astrocytes ; metabolism ; Binding Sites ; Cell Line, Tumor ; Early Growth Response Protein 1 ; metabolism ; Glial Cell Line-Derived Neurotrophic Factor ; genetics ; Glioma ; metabolism ; Histones ; chemistry ; Promoter Regions, Genetic ; Protein Processing, Post-Translational ; RNA, Messenger ; Rats ; Transcription, Genetic
9.Inhibition of Nuclear Receptor Binding SET Domain 2/Multiple Myeloma SET Domain by LEM-06 Implication for Epigenetic Cancer Therapies.
Journal of Cancer Prevention 2015;20(2):113-120
BACKGROUND: Multiple myeloma SET domain (MMSET)/nuclear receptor binding SET domain 2 (NSD2) is a lysine histone methyltransferase (HMTase) and bona fide oncoprotein found aberrantly expressed in several cancers, suggesting potential role for novel therapeutic strategies. In particular, MMSET/NSD2 is emerging as a target for therapeutic interventions against multiple myeloma, especially t(4;14) myeloma that is associated with a significantly worse prognosis than other biological subgroups. Multiple myeloma is the second most common hematological malignancy in the United States, after non-Hodgkin lymphoma and remains an incurable malignancy. Thus, effective therapeutic strategies are greatly needed. HMTases inhibitors are scarce and no NSDs inhibitors have been isolated. METHODS: We used homology modeling, molecular modeling simulations, virtual ligand screening, computational chemistry software for structure-activity relationship and performed in vitro H3K36 histone lysine methylation inhibitory assay using recombinant human NSD2-SET and human H3.1 histone. RESULTS: Here, we report the discovery of LEM-06, a hit small molecule inhibitor of NSD2, with an IC50 of 0.8 mM against H3K36 methylation in vitro. CONCLUSIONS: We propose LEM-06 as a hit inhibitor that is useful to further optimize for exploring the biology of NSD2. LEM-06 derivatives may pave the way to specific NSD2 inhibitors suitable for therapeutic efforts against malignancies.
Biology
;
Chemistry
;
Drug Design
;
Epigenomics*
;
Hematologic Neoplasms
;
Histone-Lysine N-Methyltransferase
;
Histones
;
Humans
;
Inhibitory Concentration 50
;
Lymphoma, Non-Hodgkin
;
Lysine
;
Mass Screening
;
Methylation
;
Models, Molecular
;
Multiple Myeloma
;
Prognosis
;
Structure-Activity Relationship
;
United States

Result Analysis
Print
Save
E-mail