1.Neurophilic herpesvirus: a powerful tool for neuroscience research.
Mingzhi LI ; Li PAN ; Hongxia WU ; Huaji QIU ; Yimin WANG ; Yuan SUN
Chinese Journal of Biotechnology 2023;39(1):7-18
Viruses are powerful tools for the study of modern neurosciences. Most of the research on the connection and function of neurons were done by using recombinant viruses, among which neurotropic herpesvirus is one of the most important tools. With the continuous development of genetic engineering and molecular biology techniques, several recombinant neurophilic herpesviruses have been engineered into different viral tools for neuroscience research. This review describes and discusses several common and widely used neurophilic herpesviruses as nerve conduction tracers, viral vectors for neurological diseases, and lytic viruses for neuro-oncology applications, which provides a reference for further exploring the function of neurophilic herpesviruses.
Herpesviridae/genetics*
;
Neurosciences
;
Genetic Vectors/genetics*
;
Genetic Engineering
;
Neurons
2.Herpesvirus and endoplasmic reticulum stress.
Yuting LIU ; Guoxin LI ; Bin WANG
Chinese Journal of Biotechnology 2021;37(1):67-77
Endoplasmic reticulum (ER) is an important organelle where folding and post-translational modification of secretory and transmembrane proteins take place. During virus infection, cellular or viral unfolded and misfolded proteins accumulate in the ER in an event called ER stress. To maintain the equilibrium homeostasis of the ER, signal-transduction pathways, known as unfolded protein response (UPR), are activated. The viruses in turn manipulate UPR to maintain an environment favorable for virus survival and replication. Herpesviruses are enveloped DNA viruses that produce over 70 viral proteins. Modification and maturation of large quantities of viral glycosylated envelope proteins during virus replication may induce ER stress, while ER stress play both positive and negative roles in virus infection. Here we summarize the research progress of crosstalk between herpesvirus infection and the virus-induced ER stress.
Endoplasmic Reticulum/metabolism*
;
Endoplasmic Reticulum Stress
;
Herpesviridae
;
Signal Transduction
;
Unfolded Protein Response
3.Altered T cell and monocyte subsets in prolonged immune reconstitution inflammatory syndrome related with DRESS (drug reaction with eosinophilia and systemic symptoms)
Sung Yoon KANG ; Jihyun KIM ; Jongho HAM ; Sang Heon CHO ; Hye Ryun KANG ; Hye Young KIM
Asia Pacific Allergy 2020;10(1):2-
Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a severe cutaneous adverse reaction involving various internal organs. Flare-ups after recovery from the initial presentation of DRESS are caused by relapse of drug-induced T-cell-mediated reactions. However, the specific underlying mechanism is unclear. Here, we report a case of a 60-year-old man with allopurinol-induced DRESS who suffered recurrent episodes of generalized rash with eosinophilia, which mimicked immune reconstitution inflammatory syndrome. Analysis of immunological profiles revealed that the percentages of T lymphocytes and regulatory T cells in the patient with DRESS were higher than those in healthy controls. In addition, there was a notable change in the subtype of monocytes in the patient with DRESS; the percentage of nonclassical monocytes increased, whereas that of classical monocytes decreased. Upon viral infection, nonclassical monocytes exhibited strong pro-inflammatory properties that skewed the immune response toward a Th2 profile, which was associated with persistent flare-ups of DRESS. Taken together, the results increase our understanding of the pathogenesis of DRESS as they suggest that expansion of nonclassical monocytes and Th2 cells drives disease pathogenesis.
Allopurinol
;
Drug Hypersensitivity Syndrome
;
Eosinophilia
;
Exanthema
;
Herpesviridae
;
Humans
;
Immune Reconstitution Inflammatory Syndrome
;
Middle Aged
;
Monocytes
;
Recurrence
;
T-Lymphocytes
;
T-Lymphocytes, Regulatory
;
Th2 Cells
4.A Case of Post-Herpetic Nevoid Comedones
Jong Kil SEO ; Ki Heon JEONG ; Min Kyung SHIN
Annals of Dermatology 2019;31(Suppl):S36-S38
No abstract available.
Skin Abnormalities
;
Herpesviridae Infections
;
Pigmentation Disorders
;
Hamartoma
5.Application of multiplex PCR assay to study early multiple herpesviruses infection during HSCT.
Yu Han JI ; Zi Ling ZHU ; Lu Lu YANG ; Yi Yu XIE ; Jia CHEN ; Hong LIU ; Xiao MA ; Yue Jun LIU ; Jun HE ; Yue HAN ; De Pei WU ; Xiao Jin WU
Chinese Journal of Hematology 2019;40(2):125-131
Objective: To investigate herpesvirus infection in early stage of hematopoietic stem cell transplantation (HSCT) by multiplex polymerase chain reaction (PCR), and to explore the association between multiple herpesviruses infection and clinical characteristics in HSCT patients and its impact on post-transplant complications and prognosis. Methods: A total of 734 peripheral blood samples were collected from 90 patients undergoing HSCT in the Department of Hematology, the First Affiliated Hospital of Soochow University between February 2017 and August 2017. The peripheral blood specimens were obtained before and within 90 days after transplantation at different time points. Lab-Aid824 Nucleic Acid Extraction Mini Reagent was used to extract DNA and multiplex PCR assay was used to simultaneously detect 8 kinds of human herpesviruses from genomic DNA. The incidence of various herpesvirus infections, its correlation with clinical features and effects on post-transplant complications and prognosis were analyzed. Results: The median follow-up time was 192 (range: 35-308) days. Among the 90 patients before transplantation, the incidence of herpes virus infection was 35.6% (32/90), including 12.2% (11/90) with one herpes virus infection and 23.3% (21/90) with multiple viruses infection. The incidence of herpes virus infection after transplantation was 77.8% (70/90), including 20.0% (18/90) with one herpes virus infection and 57.8% (52/90) with multiple herpes virus infection. Among the 52 patients with multiple herpes viruses infection, 30 (57.7%) patients were infected by 2 kinds of viruses, 18 (34.6%) patients by 3 kinds of viruses and 4 (7.7%) patients by 4 kinds of viruses. There was a correlation between HHV-6 and HHV-7 herpesvirus infection (OR=13.880, Q=0.026). EBV infection was related to HHV-7 infection (OR=0.093, Q=0.044). The age of patients was correlated with the incidence of HHV-1 infection before transplantation. There were 24 patients in our study experienced clinical symptoms associated with viral infection. The main manifestations were hemorrhagic cystitis (HC), interstitial pneumonia, enteritis, viral encephalitis and fever of unknown origin. EBV infection was related to HLA incompatibility and the inconsistent of the ABO blood group and grade Ⅱ-Ⅳ aGVHD after transplantation. HLA incompatibility and the unrelated donor and grade Ⅱ-Ⅳ aGVHD were related to multiple viruses infection. Conclusion: Multiple herpesviruses were common in patients undergoing HSCT, which were closely related to HLA mismatch, unrelated donor and grade Ⅱ-Ⅳ aGVHD.
DNA, Viral
;
Hematopoietic Stem Cell Transplantation
;
Herpesviridae
;
Herpesviridae Infections
;
Humans
;
Multiplex Polymerase Chain Reaction
;
Virus Activation
6.Evidence of two genetically different lymphotropic herpesviruses present among red deer, sambar, and milu herds in China
Hongwei ZHU ; Huitao LIU ; Xin YU ; Jianlong ZHANG ; Linlin JIANG ; Guozhong CHEN ; Zhibin FENG ; Youzhi LI ; Tao FENG ; Xingxiao ZHANG
Journal of Veterinary Science 2018;19(5):716-720
Herpesvirus infections in Cervidae are a serious threat affecting some deer species worldwide. In our attempt to identify malignant catarrhal fever-associated herpesviruses in deer herds, ten gammaherpesviral DNA fragments were identified in five species of deer in herds in China by using a pan-herpesvirus polymerase chain reaction assay targeting viral DNA polymerase. Notably, in sambar (Rusa unicolor), a novel gamma-2 herpesvirus was identified that showed a close relationship with fallow deer lymphotropic herpesvirus (LHV), while the other fragments were phylogenetically grouped together with Elk-LHV. Determination of whether these viruses have any clinical implication in these deer species should be undertaken urgently.
Animals
;
Cattle
;
China
;
Deer
;
DNA
;
DNA, Viral
;
Herpesviridae Infections
;
Herpesviridae
;
Malignant Catarrh
;
Polymerase Chain Reaction
7.Tracking of herpesviruses: what have been seen and will be seen?
Yalin WANG ; Huaji QIU ; Yuan SUN
Chinese Journal of Biotechnology 2018;34(11):1721-1733
Viral infection of cells is a highly intricate process that involves the complex virus-cell interactions. Recently, virologists can monitor the virus life cycle at the primary infection site in real-time using various virus tracking techniques. Herpesviruses, a class of large enveloped DNA viruses, are important pathogens threatening the health of humans and animals. This review discussed the applications of different virus tracking techniques in herpesvirus studies, to provide new insights into virus-cell interactions and replication mechanisms of herpesviruses. Though the techniques have widely been exploited, some issues need to be addressed, such as the selection of the optimal site to insert reporters and the inability to track the whole process of the virus life cycle. With the updated tracking techniques, hopefully, more complex replication mechanismsof herpesviruses will be revealed in detail.
Animals
;
Herpesviridae
;
pathogenicity
;
physiology
;
Humans
;
Virus Diseases
;
Virus Physiological Phenomena
;
Virus Replication
8.US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection.
Sungjin LEE ; Yoon Hee CHUNG ; Choongho LEE
Biomolecules & Therapeutics 2017;25(1):69-79
Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling.
Biology
;
Carcinogenesis
;
Cytomegalovirus Infections*
;
Cytomegalovirus*
;
Genome
;
Herpesviridae
;
Humans*
9.Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue.
Seok Joong YUN ; Pildu JEONG ; Ho Won KANG ; Helen Ki SHINN ; Ye Hwan KIM ; Chunri YAN ; Young Ki CHOI ; Dongho KIM ; Dong Hee RYU ; Yun Sok HA ; Tae Hwan KIM ; Tae Gyun KWON ; Jung Min KIM ; Sang Heon SUH ; Seon Kyu KIM ; Seon Young KIM ; Sang Tae KIM ; Won Tae KIM ; Ok Jun LEE ; Sung Kwon MOON ; Nam Hyung KIM ; Isaac Yi KIM ; Jayoung KIM ; Hee Jae CHA ; Yung Hyun CHOI ; Eun Jong CHA ; Wun Jae KIM
International Neurourology Journal 2016;20(2):122-130
PURPOSE: Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. METHODS: A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. RESULTS: Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). CONCLUSIONS: These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections.
Carcinogenesis
;
Herpesviridae
;
Humans
;
Hyperplasia*
;
Immunohistochemistry
;
MicroRNAs
;
Nanoparticles
;
Prostate*
;
Prostatic Hyperplasia
;
Prostatic Neoplasms
;
Real-Time Polymerase Chain Reaction
10.Research Advances in Cyprinid Herpesvirus 3.
Shucheng ZHENG ; Qing WANG ; Yingying LI ; Weiwei ZENG ; Yingying WANG ; Chun LIU ; Hongru LIANG ; Cunbin SHI
Chinese Journal of Virology 2016;32(1):108-120
Cyprinid herpesvirus 3 (CyHV-3) is the causative agent of an extremely contagious and aggressive disease afflicting common corp Cyprinus carpio L. termed koi herpesvirus disease (KHVD). Since it was first reported in 1997, the virus has spread worldwide rapidly, leading to enormous financial losses in industries based on common carp and koi carp. This review summarizes recent advances in CyHV-3 research on the etiology, epidemiology, pathogenesis, diagnosis, prevention, and control of KHVD.
Animals
;
Fish Diseases
;
diagnosis
;
virology
;
Fishes
;
classification
;
virology
;
Herpesviridae
;
genetics
;
isolation & purification
;
physiology
;
Herpesviridae Infections
;
diagnosis
;
veterinary
;
virology

Result Analysis
Print
Save
E-mail