1.Herbal Textual Research on Spatholobi Caulis in Famous Classical Formulas
Yajie XIANG ; Yangyang LIU ; Jian FENG ; Chun YAO ; Erwei HAO ; Wenlan LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):238-248
Through consulting herbal medicine, medical books, and local chronicles from past dynasties to modern times, this paper systematically researched Spatholobi Caulis from name, origin, producing areas, harvesting, processing, usage, quality evaluation, functions and indications, providing a reference for the development and utilization of famous classical formulas containing Spatholobi Caulis. According to the research, Spatholobi Caulis was first recorded in the Annals of Shunning Prefecture from the Qing dynasty. It was originally a medicinal herb commonly used in Shunning, Yunnan, and was named from the red juice resembling chicken blood that flowed out after the vein was cut off. The mainstream original plants of each dynasty were Kadsura heteroclita and Spatholobus suberectus. Among them, K. heteroclita mainly focused on dispersing blood stasis and unblocking meridians, mainly treating rheumatic pain and injuries caused by falls or blows, and it is mostly used as the raw material of Jixueteng ointments. S. suberectus was commonly used as decoction pieces in decoction, which had the functions of promoting blood circulation and replenishing blood, activating meridians and collaterals, and mainly used for treating anemia, irregular menstruation, and rheumatic bone pain. The production area of Spatholobi Caulis recorded in the Qing dynasty was Yunnan. Currently, the main production area of S. suberectus is Guangxi, while the main production area of K. interior is Yunnan. In the Qing dynasty, the usage of Spatholobi Caulis was an individual prescription with other herbs before making ointments, which was usually composed of the juice of it, safflower, angelica, and glutinous rice. But in modern times, Spatholobi Caulis is mostly sliced and dried for use. The quality of Spatholobi Caulis is often determined by the number of reddish-brown concentric circles on the cut surface, with a higher number indicating better quality. Additionally, the presence of resinous secretions is also considered desirable. Based on the research findings, it is suggested that when developing famous classical formulas containing Spatholobi Caulis, the choice of the primary source should be S. suberectus or K. heteroclita, taking into consideration the therapeutic effects of the formula. It is also recommended that the latest plant classification be referenced in the next edition of Chinese Pharmacopoeia, adjusting the primary source of Kadsurae Caulis to K. heteroclita to avoid confusion caused by inconsistent original names, and the functions adjust to promote Qi circulation and relieve pain, disperse blood stasis and unblock collaterals, treating injuries caused by falls and bruises.
2.The effect and mechanism of Huangkui capsule pretreatment of human umbilical cord mesenchymal stem cell-derived exosomes on improving renal ischemia-reperfusion injury
Yawei YAO ; Jiahui HE ; Hao WANG ; Yutong WANG ; Ruiyan WANG ; Xingyu WAN ; Yujia LIU ; Xinghua LÜ
Organ Transplantation 2025;16(2):237-245
Objective To explore the effects and mechanisms of human umbilical cord mesenchymal stem cell (HUC-MSC)-derived exosomes (Exo) pretreated with Huangkui capsules on renal ischemia-reperfusion injury (IRI). Methods HUC-MSCs were cultured in media containing different concentrations of Huangkui capsules for 24 hours to determine cell viability and select an appropriate concentration for subsequent experiments. HUC-MSCs were pretreated with 50 μg/mL Huangkui capsules for 24 hours, and Exo were extracted using an exosome extraction kit. The morphology was observed under a transmission electron microscope, particle size was measured by nanoparticle tracking analysis, and the expression of exosomal membrane surface marker proteins was detected by Western blot. Human renal tubular epithelial cells (HK-2 cells) were randomly divided into hypoxia/reoxygenation group (M group), hypoxia/reoxygenation + Exo group (E group), and hypoxia/reoxygenation + Huangkui capsules pretreated Exo group (H group). Western blotting was used to measure the expression of endoplasmic reticulum stress (ERS)-related proteins, and real-time fluorescent quantitative reverse transcription polymerase chain reaction was used to measure the expression of ERS-related gene messenger RNA (mRNA). Mice were randomly divided into sham operation group (Sham group), ischemia-reperfusion group (I/R group), ischemia-reperfusion + Exo group (E group), and ischemia-reperfusion + Huangkui capsules pretreated Exo group (H group). Renal histological assessment, serum creatinine (Scr), blood urea nitrogen (BUN) measurement and inflammatory factor detection were performed 24 hours later. Results Both Exo and Huangkui capsules prereated Exo had a bilayer membrane structure and a cup-shaped morphology; their average particle sizes were 116.8 nm and 81.3 nm, respectively. Both expressed CD9, CD63, TSG101. Compared with the M group, the E group had decreased relative expression of transcription factor 6 (ATF6) and protein kinase R-like endoplasmic reticulum kinase (PERK) proteins, increased mRNA relative expression, increased relative expression of C/EBP homologous protein (CHOP) protein, and decreased mRNA relative expression. Compared with the E group, the H group had decreased relative expression of ATF6, PERK, CHOP proteins, and decreased mRNA relative expression of ATF6 and PERK (all P<0.05). Animal experimental results showed that compared with the Sham group, the I/R group had increased renal tubular injury scores, Scr, BUN, interleukin (IL)-1β, IL-10, IL-18, tumor necrosis factor (TNF)-α levels. Compared with the I/R group, the E and H groups had decreased renal tubular injury scores and Scr, BUN, IL-1β, IL-10, IL-18, TNF-α levels. Compared with the E group, the H group had decreased renal tubular injury scores and Scr, BUN, IL-1β, IL-10, IL-18, TNF-α levels (all P<0.05). Conclusions Huangkui capsules pretreatment HUC-MSC-derived Exo may alleviate renal IRI by inhibiting ERS.
3.Herbal Textual Research on Zanthoxylum armatum and Zanthoxyli Radix in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Yapeng WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):252-262
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting and processing, and other aspects of Manjiao and Zanthoxyli Radix by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing the two medicinal materials. According to the herbal textual research, Manjiao was first recorded in Shennong Bencaojing of the Han dynasty with aliases such as Zhujiao, Goujiao and Zhijiao. Throughout history, Manjiao was sourced from the stems and roots of Zanthoxylum armatum in the Rutaceae family, and its leaves and fruits can also be used in medicine. The traditional recorded production area was mainly in Yunzhong(now Tuoketuo region in Inner Mongolia), with mentions in Zhejiang, Hunan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan, and other provinces. Presently, this species is distributed from the south of Shandong, to Hainan, Taiwan, Tibet and other regions. The roots can be harvested year-round, while the fruits are harvested in autumn after maturity. In ancient times, the roots and stems were mostly used for brewing or soaking in wine, whereas nowadays, the roots are often sliced and then used as a raw material in traditional Chinese medicine, and the fruits should be stir-fried before use. Manjiao has a bitter taste and warm property, and was historically used to treat wind-cold dampness, joint pain, limb numbness, and knee pain. Modern researches have summarized its effects as dispelling wind, dispersing cold, promoting circulation, and relieving pain, and it is used for treating rheumatoid arthritis, toothache, bruises, as well as an anthelmintic. Zanthoxyli Radix initially known as Rudi Jinniugen, recorded in Bencao Qiuyuan of the Qing dynasty, with the alternate name of Liangbianzhen. In recent times, it is more commonly referred to as Liangmianzhen, sourced from the dried roots of Z. nitidum of the Rutaceae family, mainly produced in Guangxi and Guangdong. It can be harvested throughout the year, cleaned, sliced, and dried after harvesting. Zanthoxyli Radix is pungent, bitter, warm and slightly toxic, with the functions of promoting blood circulation, removing stasis, relieving pain, dispelling wind, and resolving swelling. Based on the results of herbal textual research, it is clarified that the ancient Manjiao and the modern Zanthoxyli Radix are not the same species. This article corrects the mistaken belief of by previous scholars that Zanthoxyli Radix is the same as ancient Manjiao, and suggests that formulas described as Manjiao should use Z. armatum as the medicinal herb, while those described as Liangmianzhen or Rudi Jinniu should use Z. nitidum. The processing was performed according to the processing requirements prescribed in the formulas, otherwise, the raw products are recommended for use.
4.Herbal Textual Research on Zanthoxylum armatum and Zanthoxyli Radix in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Yapeng WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):252-262
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting and processing, and other aspects of Manjiao and Zanthoxyli Radix by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing the two medicinal materials. According to the herbal textual research, Manjiao was first recorded in Shennong Bencaojing of the Han dynasty with aliases such as Zhujiao, Goujiao and Zhijiao. Throughout history, Manjiao was sourced from the stems and roots of Zanthoxylum armatum in the Rutaceae family, and its leaves and fruits can also be used in medicine. The traditional recorded production area was mainly in Yunzhong(now Tuoketuo region in Inner Mongolia), with mentions in Zhejiang, Hunan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan, and other provinces. Presently, this species is distributed from the south of Shandong, to Hainan, Taiwan, Tibet and other regions. The roots can be harvested year-round, while the fruits are harvested in autumn after maturity. In ancient times, the roots and stems were mostly used for brewing or soaking in wine, whereas nowadays, the roots are often sliced and then used as a raw material in traditional Chinese medicine, and the fruits should be stir-fried before use. Manjiao has a bitter taste and warm property, and was historically used to treat wind-cold dampness, joint pain, limb numbness, and knee pain. Modern researches have summarized its effects as dispelling wind, dispersing cold, promoting circulation, and relieving pain, and it is used for treating rheumatoid arthritis, toothache, bruises, as well as an anthelmintic. Zanthoxyli Radix initially known as Rudi Jinniugen, recorded in Bencao Qiuyuan of the Qing dynasty, with the alternate name of Liangbianzhen. In recent times, it is more commonly referred to as Liangmianzhen, sourced from the dried roots of Z. nitidum of the Rutaceae family, mainly produced in Guangxi and Guangdong. It can be harvested throughout the year, cleaned, sliced, and dried after harvesting. Zanthoxyli Radix is pungent, bitter, warm and slightly toxic, with the functions of promoting blood circulation, removing stasis, relieving pain, dispelling wind, and resolving swelling. Based on the results of herbal textual research, it is clarified that the ancient Manjiao and the modern Zanthoxyli Radix are not the same species. This article corrects the mistaken belief of by previous scholars that Zanthoxyli Radix is the same as ancient Manjiao, and suggests that formulas described as Manjiao should use Z. armatum as the medicinal herb, while those described as Liangmianzhen or Rudi Jinniu should use Z. nitidum. The processing was performed according to the processing requirements prescribed in the formulas, otherwise, the raw products are recommended for use.
5.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.
6.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.
7.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.
8.WANG Xiuxia's Clinical Experience in Treating Hyperprolactinemia with Liver Soothing Therapy
Yu WANG ; Danni DING ; Yuehui ZHANG ; Songli HAO ; Meiyu YAO ; Ying GUO ; Yang FU ; Ying SHEN ; Jia LI ; Fangyuan LIU ; Fengjuan HAN
Journal of Traditional Chinese Medicine 2025;66(14):1428-1432
This paper summarizes Professor WANG Xiuxia's clinical experience in treating hyperprolactinemia using the liver soothing therapy. Professor WANG identifies liver qi stagnation and rebellious chong qi (冲气) as the core pathomechanisms of hyperprolactinemia. Furthermore, liver qi stagnation may transform into fire or lead to pathological changes such as spleen deficiency with phlegm obstruction or kidney deficiency with essence depletion. The treatment strategy centers on soothing the liver, with a modified version of Qinggan Jieyu Decoction (清肝解郁汤) as the base formula. Depending on different syndrome patterns such as liver stagnation transforming into fire, liver stagnation with spleen deficiency, or liver stagnation with kidney deficiency, heat clearing, spleen strengthening, or kidney tonifying herbs are added accordingly. In addition, three paired herb combinations are commonly used for symptom specific treatment, Danggui (Angelica sinensis) with Chuanxiong (Ligusticum chuanxiong), Zelan (Lycopus lucidus) with Yimucao (Leonurus japonicus) , and Jiegeng (Platycodon grandiflorus) with Zisu (Perilla frutescens).
9.Herbal Textual Research on Abri Herba and Abri Mollis Herba in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):193-201
This article systematically analyzes the historical evolution of the name, origin, academic name, medicinal parts, origin, harvesting, processing and other aspects of Abri Herba and Abri Mollis Herba by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the modern literature, so as to provide a basis for the development of famous classical formulas containing this type of medicinal materials. According to the herbal textual research, Abri Herba was first recorded in Lingnan Caiyaolu, with other aliases such as Huangtoucao and Xiye Longlincao. It originates from the dried whole plant of Abrus cantoniensis, a Fabaceae plant, which can be used medicinally except for its fruits. Currently, this species is mainly distributed in Guangdong and Guangxi, and also found in Hunan and Thailand, it can be harvested throughout the year, mainly in spring and autumn. The roots, stems, and leaves can be used for medicinal purposes, but the pods are toxic and need to be removed. After harvesting, impurities and pods are removed, and it is dried and processed for medicinal use. Abri Herba has a sweet and slightly bitter taste, is cool in nature, and is associated with the liver and stomach meridians, it is used for clearing heat and relieving dampness, dispersing blood stasis and relieving pain, and is mainly used to treat jaundice-type hepatitis, stomach pain, rheumatic bone pain, contusion and ecchymosis pain, and mastitis. Abri Mollis Herba was first recorded in the 1982 edition of Zhongyaozhi as another origin for Abri Herba, and was singled out in some monographs such as Xinhua Bencao Gangyao in 1988 for use, while some other monographs use it as a local habitual products or confused products of Abri Herba with aliases such as Daye Jigucao, Qingtingteng, and Maoxiangsi. It comes from the dried whole herb of A. mollis without pods, and is mainly produced in Guangxi and Guangdong, and occasionally found in Hong Kong, Hainan and Fujian. The collection and processing are similar to Abri Herba, after harvesting, impurities and pods are removed, and it is dried and cut for medicinal use. Abri Mollis Herba has a sweet and light taste, is cool in nature, and is associated with the liver and stomach meridians, with the efficacy of clearing heat and detoxifying, and promoting dampness, it is mainly used to treat infectious hepatitis, mastitis, furuncles, burns and scalds, and pediatric malnutrition. Based on the research, A. mollis was first recorded to be used as a medicine in the same origin as A. cantoniensis, and as plants of the same genus, have similar morphological characteristics, and their medicinal parts, collection and processing, properties and flavors, and meridian affiliations are consistent. And in the folk, Abri Mollis Herba is often used as Abri Herba, which has been used for a long time and is now dominated by the cultivation of A. mollis. So it is recommended that the subsequent version of Chinese Pharmacopoeia should include A. mollis in the origin of Abri Herba, and it is also recommended that in famous classical formulas refered to Jiguccao can use A. cantoniensis and A. mollis as the sources of the herb, refered to Mao Jiguccao can use A. mollis as the sources of the herb. Processing is carried out according to the requirements specified in the original formulas, and raw products are recommended to be included in the medicine if there are no requirements.
10.Herbal Textual Research on Abri Herba and Abri Mollis Herba in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):193-201
This article systematically analyzes the historical evolution of the name, origin, academic name, medicinal parts, origin, harvesting, processing and other aspects of Abri Herba and Abri Mollis Herba by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the modern literature, so as to provide a basis for the development of famous classical formulas containing this type of medicinal materials. According to the herbal textual research, Abri Herba was first recorded in Lingnan Caiyaolu, with other aliases such as Huangtoucao and Xiye Longlincao. It originates from the dried whole plant of Abrus cantoniensis, a Fabaceae plant, which can be used medicinally except for its fruits. Currently, this species is mainly distributed in Guangdong and Guangxi, and also found in Hunan and Thailand, it can be harvested throughout the year, mainly in spring and autumn. The roots, stems, and leaves can be used for medicinal purposes, but the pods are toxic and need to be removed. After harvesting, impurities and pods are removed, and it is dried and processed for medicinal use. Abri Herba has a sweet and slightly bitter taste, is cool in nature, and is associated with the liver and stomach meridians, it is used for clearing heat and relieving dampness, dispersing blood stasis and relieving pain, and is mainly used to treat jaundice-type hepatitis, stomach pain, rheumatic bone pain, contusion and ecchymosis pain, and mastitis. Abri Mollis Herba was first recorded in the 1982 edition of Zhongyaozhi as another origin for Abri Herba, and was singled out in some monographs such as Xinhua Bencao Gangyao in 1988 for use, while some other monographs use it as a local habitual products or confused products of Abri Herba with aliases such as Daye Jigucao, Qingtingteng, and Maoxiangsi. It comes from the dried whole herb of A. mollis without pods, and is mainly produced in Guangxi and Guangdong, and occasionally found in Hong Kong, Hainan and Fujian. The collection and processing are similar to Abri Herba, after harvesting, impurities and pods are removed, and it is dried and cut for medicinal use. Abri Mollis Herba has a sweet and light taste, is cool in nature, and is associated with the liver and stomach meridians, with the efficacy of clearing heat and detoxifying, and promoting dampness, it is mainly used to treat infectious hepatitis, mastitis, furuncles, burns and scalds, and pediatric malnutrition. Based on the research, A. mollis was first recorded to be used as a medicine in the same origin as A. cantoniensis, and as plants of the same genus, have similar morphological characteristics, and their medicinal parts, collection and processing, properties and flavors, and meridian affiliations are consistent. And in the folk, Abri Mollis Herba is often used as Abri Herba, which has been used for a long time and is now dominated by the cultivation of A. mollis. So it is recommended that the subsequent version of Chinese Pharmacopoeia should include A. mollis in the origin of Abri Herba, and it is also recommended that in famous classical formulas refered to Jiguccao can use A. cantoniensis and A. mollis as the sources of the herb, refered to Mao Jiguccao can use A. mollis as the sources of the herb. Processing is carried out according to the requirements specified in the original formulas, and raw products are recommended to be included in the medicine if there are no requirements.

Result Analysis
Print
Save
E-mail