1.Clinical Efficacy of Tangning Tongluo Tablets for Nonproliferative Diabetic Retinopathy
Fuwen ZHANG ; Junguo DUAN ; Wen XIA ; Tiantian SUN ; Yuheng SHI ; Shicui MEI ; Xiangxia LUO ; Xing LI ; Yujie PAN ; Yong DENG ; Chuanlian RAN ; Hao CHEN ; Li PEI ; Shuyu YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):132-139
ObjectiveTo observe the clinical efficacy and safety of Tangning Tongluo tablets in the treatment of nonproliferative diabetic retinopathy (DR). MethodsFourteen research centers participated in this study, which spanned a time interval from September 2021 to May 2023. A total of 240 patients with nonproliferative DR were included and randomly assigned into an observation group (120 cases) and a control group (120 cases). The observation group was treated with Tangning Tongluo tablets, and the control group with calcium dobesilate capsules. Both groups were treated for 24 consecutive weeks. The vision, DR progression rate, retinal microhemangioma, hemorrhage area, exudation area, glycosylated hemoglobin (HbA1c) level, and TCM syndrome score were assessed before and after treatment, and the safety was observed. ResultsThe vision changed in both groups after treatment (P<0.05), and the observation group showed higher best corrected visual acuity (BCVA) than the control group (P<0.05). The DR progression was slow with similar rates in the two groups. The fundus hemorrhage area and exudation area did not change significantly after treatment in both groups, while the observation group outperformed the control group in reducing the fundus hemorrhage area and exudation area. There was no significant difference in the number of microhemangiomas between the two groups before treatment. After treatment, the number of microhemangiomas decreased in both the observation group (Z=-1.437, P<0.05) and the control group (Z=-2.238, P<0.05), and it showed no significant difference between the two groups. As the treatment time prolonged, the number of microhemangiomas gradually decreased in both groups. There was no significant difference in the HbA1c level between the two groups before treatment. After treatment, the decline in the HbA1c level showed no significant difference between the two groups. The TCM syndrome score did not have a statistically significant difference between the two groups before treatment. After treatment, neither the TCM syndrome score nor the response rate had significant difference between the two groups. With the extension of the treatment time, both groups showed amelioration of TCM syndrome compared with the baseline. ConclusionTangning Tongluo tablets are safe and effective in the treatment of nonproliferative DR, being capable of improving vision and reducing hemorrhage and exudation in the fundus.
2.Treatment of Neurological Diseases with Chaihu Guizhi Ganjiangtang: A Review
Ge HAO ; Changyu GAO ; Zexin PAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):313-322
Neurological diseases encompass a wide range of conditions, and their incidence and mortality rates have been increasing year by year, severely endangering the health and lives of patients. Chaihu Guizhi Ganjiangtang is a recognized prescription formulated by ZHANG Zhongjing, which has a wide application in clinical practices. It exerts the effects of harmonizing and releasing Shaoyang, warming the spleen to dispel cold, and producing fluid and astringing Yin. Clinical studies have confirmed that Chaihu Guizhi Ganjiangtang, with modified herbs or in combination with acupuncture, moxibustion, or Western medicine, exhibits remarkable efficacy, minimal adverse reactions, and high safety in the treatment of neurological diseases such as insomnia, depression, anxiety disorders, dizziness, headache, perimenopausal syndrome (PMS), diabetic peripheral neuropathy (DPN), post-stroke restless legs syndrome (RLS), bipolar disorders, and tic disorders in children. Modern pharmacological studies have pointed out that the main active ingredients of single herbs in the whole formula and composition of Chaihu Guizhi Ganjiangtang, such as saikosaponins, estradiol, cinnamaldehyde, baicalin, oroxindin, gingerol, 6-shogaol, glycyrrhizic acid, and liquiritin, can exert multi-target and multi-pathway effects, including reducing oxidative stress, alleviating neuroinflammation, inhibiting ferroptosis, microglial cell activation, and neuroapoptosis, and regulating neurotransmitter levels, estrogen levels, synaptic plasticity, neuronal autophagy level, and gluconeogenic metabolism. By reviewing relevant literature in recent years, this article summarized the clinical research and mechanism of action of Chaihu Guizhi Ganjiangtang in the treatment of neurological diseases and put forward corresponding suggestions, providing references for in-depth research.
3.Diagnosis and treatment process of a case of Streptomyces thermoviolaceus pneumonia and literature review
Pan LIU ; Xiaotian DAI ; Tingting LIU ; Hao JIANG ; Lan LIANG
China Pharmacy 2025;36(8):981-985
OBJECTIVE To report the diagnosis and treatment process of 1 case of Streptomyces thermoviolaceus pneumonia, and provide reference for the diagnosis and treatment of this type of infection by combining literature on Streptomyces pneumonia. METHODS A case study was conducted on a patient with S. thermoviolaceus pneumonia treated at the First Affiliated Hospital of Army Medical University. Additionally, a systematic literature review of Streptomyces pneumonia cases was performed. RESULTS The patient with S. thermoviolaceus presented with left lung consolidation and mass-like opacity. Initial diagnosis via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry failed, but 16S rRNA gene amplification and sequencing confirmed S. thermoviolaceus as the causative pathogen. Six-month therapy with Amoxicillin capsules (1 g orally, three times daily) resulted in near-complete lesion resolution. The literature analysis of Streptomyces pneumonia revealed that 13 patients with Streptomyces pneumonia were included (including the patient reported in the article), age range of 18-77 years, more males (8 cases), and mostly suffering from underlying diseases. In terms of clinical symptoms, all enrolled cases exhibited cough, and some cases were accompanied by variable dyspnea. Imaging findings included that there was no characteristic predilection site for Streptomyces pneumonia lesions, and CT images commonly showed lung consolidation and bilateral nodules. Definitive diagnosis relied on 16S rRNA sequencing. Treatment regimens included tetracyclines, β -lactam drugs combined with enzyme inhibitors, ceftriaxone, aminoglycosides, macrolides, or carbapenems, administered for prolonged duration (6 months). Follow-up indicated a good prognosis, and only one mortality occurred. CONCLUSIONS 16S rRNA gene sequencing should be prioritized for diagnosing S. pneumonia. Effective antimicrobial options include tetracyclines,β-lactam drugs combined with enzyme inhibitors, ceftriaxone, aminoglycosides, macrolides, and carbapenems. Prolonged therapy correlates with favorable prognosis.
4.Analysis of clinical characteristics and diagnostic prediction of Qi deficiency and blood stasis syndrome in acute ischemic stroke
Hao XU ; Xu ZHU ; Bo LI ; Xiaodan LIU ; Xihui PAN ; Changqing DENG
Digital Chinese Medicine 2025;8(1):111-122
[Objective] :
To explore the clinical characteristics and methods for syndrome differentiation prediction, as well as to construct a predictive model for Qi deficiency and blood stasis syndrome in patients with acute ischemic stroke (AIS).
[Methods] :
This study employed a retrospective case-control design to analyze patients with AIS who received inpatient treatment at the Neurology Department of The First Hospital of Hunan University of Chinese Medicine from January 1, 2013 to December 31, 2022. AIS patients meeting the diagnostic criteria for Qi deficiency and blood stasis syndrome were stratified into case group, while those without Qi deficiency and blood stasis syndrome were stratified into control group. The demographic characteristics (age and gender), clinical parameters [time from onset to admission, National Institutes of Health Stroke Scale (NIHSS) score, and blood pressure], past medical history, traditional Chinese medicine (TCM) diagnostic characteristics (tongue and pulse), neurological symptoms and signs, imaging findings [magnetic resonance imaging-diffusion weighted imaging (MRI-DWI)], and biochemical indicators of the two groups were collected and compared. The indicators with statistical difference (P < 0.05) in univariate analysis were included in multivariate logistic regression analysis to evaluate their predictive value for the diagnosis of Qi deficiency and blood stasis syndrome, and the predictive model was constructed by receiver operating characteristic (ROC) curve analysis.
[Results] :
The study included 1 035 AIS patients, with 404 cases in case group and 631 cases in control group. Compared with control group, patients in case group were significantly older, had extended onset-to-admission time, lower diastolic blood pressure, and lower NIHSS scores (P < 0.05). Case group showed lower incidence of hypertension history (P < 0.05). Regarding tongue and pulse characteristics, pale and dark tongue colors, white tongue coating, fine pulse, astringent pulse, and sinking pulse were more common in case group. Imaging examinations demonstrated higher proportions of centrum semiovale infarction, cerebral atrophy, and vertebral artery stenosis in case group (P < 0.05). Among biochemical indicators, case group showed higher proportions of elevated fasting blood glucose and glycated hemoglobin (HbA1c), while lower proportions of elevated white blood cell count, reduced hemoglobin, and reduced high-density lipoprotein cholesterol (HDL-C) (P < 0.05). Multivariate logistic regression analysis identified significant predictors for Qi deficiency and blood stasis syndrome including: fine pulse [odds ratio (OR) = 4.38], astringent pulse (OR = 3.67), superficial sensory abnormalities (OR = 1.86), centrum semiovale infarction (OR = 1.57), cerebral atrophy (OR = 1.55), vertebral artery stenosis (OR = 1.62), and elevated HbA1c (OR = 3.52). The ROC curve analysis of the comprehensive prediction model yielded an area under the curve (AUC) of 0.878 [95% confidence interval (CI) = 0.855 – 0.900].
[Conclusion]
This study finds out that Qi deficiency and blood stasis syndrome represents one of the primary types of AIS. Fine pulse, astringent pulse, superficial sensory abnormalities, centrum semiovale infarction, cerebral atrophy, vertebral artery stenosis, elevated blood glucose, elevated HbA1c, pale and dark tongue colors, and white tongue coating are key objective diagnostic indicators for the syndrome differentiation of AIS with Qi deficiency and blood stasis syndrome. Based on these indicators, a syndrome differentiation prediction model has been developed, offering a more objective basis for clinical diagnosis, and help to rapidly identify this syndrome in clinical practice and reduce misdiagnosis and missed diagnosis.
5.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
6.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
7.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
8.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
9.Genomic characteristics and phylogenetic analyses of enteroaggregative Escherichia coli infection in diarrhea outpatients in Pudong New Area, Shanghai
Qiqi CUI ; Yuchen LU ; Suping WU ; Yinwen ZHANG ; Bing ZHAO ; Lifeng PAN ; Yingjie ZHENG ; Lipeng HAO
Shanghai Journal of Preventive Medicine 2025;37(4):342-349
ObjectiveTo investigate the whole genomic characteristics and phylogenetic relationships of clinical isolates of enteroaggregative Escherichia coli (EAEC) in diarrhea outpatients in Pudong New Area, Shanghai. MethodsBased on the diarrheal disease surveillance network in Pudong New Area, Shanghai, whole-genome sequencing was performed on a total of 55 EAEC strains isolated from fecal samples of the diarrhea outpatients from January 2015 to December 2019. The genome analyses based on raw sequencing data encompassed genome size, coding genes, dispersed repeat sequences, genomic islands, and protein coding regions, and pan-genome analyses were conducted simultaneously. Contigs sequences assays were performed to analyze molecular characteristics including serotypes, antibiotic resistance genes, and virulence factors. The phylogenetic clusters and multilocus sequence typing (MLST) were identified, and a phylogenetic tree was constructed. ResultsEAEC exhibited an open pan-genome. The predominant serotype of EAEC in diarrhea outpatients in Pudong New Area was O130:H27, and the carriage rate of β-lactam resistance genes was the highest (67.27%, 37/55). A total of 29 virulence factors and 106 virulence genes were identified, phylogenic group B1 was the predominant group, and clonal group CC31 was the dominant clonal group. The strain distribution was highly heterogeneous. ConclusionThe genomic characteristics of EAEC displayed significant strain polymorphism. It is necessary to develop effective strategies for differential diagnosis and improve detection capabilities for infection with EAEC of different serotypes and genotypes.
10.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.

Result Analysis
Print
Save
E-mail