1.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Kelch-Like ECH-Associated Protein 1/metabolism*
		                        			;
		                        		
		                        			Magnesium/metabolism*
		                        			;
		                        		
		                        			Osseointegration
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/metabolism*
		                        			;
		                        		
		                        			Endothelial Cells/metabolism*
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			
		                        		
		                        	
2.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        	
3.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        	
4.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        	
5.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        	
6.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        	
7.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        	
8.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        	
9.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        	
10.Berberine attenuates renal injury in rats with chronic renal failure
Dandan XIE ; Han LI ; Baiju WANG ; Na WANG ; Hanwen CHEN ; Lei LIU
Basic & Clinical Medicine 2024;44(12):1663-1669
		                        		
		                        			
		                        			Objective To investigate the effect of berberine(BBR)on chronic renal failure(CRF)rats and its mechanism.Methods CRF rat model was established by removing 5/6 kidneys and all rats were randomly divided into sham group,chronic renal failure model group,berberine treatment group and uremic clearance granules(UCG)treatment group with 10 in each.Renal function indexes in each group were examined by an automated bio-chemistry instrument.The level of MMP-2 and MMP-9 were detected by ELISA.The degree of renal fibrosis was observed by PAS and Masson staining microscopy.The expression of NF-κB p65 and IL-6 were detected by immu-nohistochemistry method.Expression of fibrosis-related proteins and TGF-β1/ERK signaling pathway proteins in re-nal tissues was detected by Western blot.Results Compared with sham group,renal function and renal histopatho-logical damage was significantly increased in the model group,and BBR improved renal function and histopathological damage in CRF rats.Compared with the sham group,the serum level of MMP-2 and MMP-9 was significantly de-creased(P<0.05),the expression of IL-6 and NF-κB p65 was up-regulated(P<0.05).The expression of FN,α-SMA,Col-Ⅰ,Col-Ⅲ,TGF-β1,and p-ERK1/2 proteins was up-regulated in the model group of rats(P<0.05),while the BBR treatment significantly reversed the expression of these molecules(P<0.05).Conclusions BBR may improve inflammation and fibrosis by inhibiting TGF-β1/ERK1/2 pathway,and play a protective role in the kidney of CRF rat.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail