1.Therapeutic effect of anti-PD-L1&CXCR4 bispecific nanobody combined with gemcitabine in synergy with PBMC on pancreatic cancer treatment
Hai HU ; Shu-yi XU ; Yue-jiang ZHENG ; Jian-wei ZHU ; Ming-yuan WU
Acta Pharmaceutica Sinica 2025;60(2):388-396
Pancreatic cancer is a kind of highly malignant tumor with a low survival rate and poor prognosis. The effectiveness of gemcitabine as a first-line chemotherapy drug is limited; however, it can activate dendritic cells and improve antigen presentation which increase the sensitivity of tumor cell to immunotherapy. Although immunotherapy has made some advancements in cancer treatment, the therapeutic benefit of programmed cell death receptor 1/programmed death receptor-ligand 1 (PD-1/PD-L1) blockade therapy remains relatively low. The chemokine C-X-C chemokine ligand 12 (CXCL12) contributes to an immunosuppressive tumor microenvironment by recruiting immunosuppressive cells. The receptor C-X-C motif chemokine receptor 4 (CXCR4), highly expressed in various tumors including pancreatic cancer, plays a crucial role in tumor development and progression. In this study, the anti-tumor immune response of human peripheral blood mononuclear cell (hPBMC) was enhanced using the combination of BsNb PX4 (anti-PD-L1&CXCR4 bispecific nanobody) and gemcitabine. In a co-culture system of gemcitabine-pretreated hPBMCs with tumor cells, the BsNb PX4 synergized gemcitabine to improve the cytotoxic activity of hPBMCs against tumor cells. Flow cytometry analysis confirmed increased ratio of CD8+ to CD4+ T cells in combination treatment. In NOD/SCID mice bearing pancreatic cancer, the combination treatment exhibited more infiltration of CD8+ T cells into tumor tissues, contributing to an effective anti-tumor response. This study presents potential new therapies for the treatment of pancreatic cancer. Ethical approval was obtained for collection of hPBMC samples from the Local Ethics Committee of Shanghai Jiao Tong University. All animal experiments were approved by the Animal Ethic Committee of Shanghai Jiao Tong University (authorizing number: A2024246).
2.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
3.Novel outpatient infusion model of blinatumomab: case studies of two patients
Guijun LI ; Xuemei JIANG ; Xin WANG ; Qiuxia XU ; Jianhui LI ; Susi DAI ; Ying HE ; Hai YI ; Dan CHEN
Chinese Journal of Blood Transfusion 2025;38(4):557-561
[Objective] To evaluate the feasibility of a novel outpatient infusion model for blinatumomab in two acute lymphoblastic leukemia (ALL) patients, aiming to address challenges of poor treatment tolerance, high healthcare costs, and compromised quality of life, thereby providing clinical insights for broader adoption of this approach. [Methods] Two post-allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients undergoing blinatumomab maintenance therapy were selected to evaluate the efficacy of the outpatient infusion model. Patient selection criteria, nursing protocols, standardized workflows, and advancements in infusion practices were systematically analyzed combined with a review of global developments in this field. [Results] Both patients completed outpatient blinatumomab infusion without severe adverse events, demonstrating preliminary feasibility and safety of this model. The novel approach enhanced treatment convenience, reduced hospitalization costs, and improved quality of life. [Conclusion] Despite the limited sample size, this pilot study highlights the potential of outpatient blinatumomab administration as a viable alternative to traditional inpatient regimens.
4.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
8.Comparison of the efficacy of mini and super mini percutaneous nephrolithotomy in the treatment of single pediatric renal pelvis stones with CT value ≤800 HU
Aierken AINIWAER ; Silamu KAHAERMAN ; Reheman REXIATI ; Mamute MAWUSUMU ; Hai XU ; Batuer JIASUER
Journal of Modern Urology 2025;30(5):386-389
Objective: To compare the clinical efficacy of mini percutaneous nephrolithotomy (mPCNL) and super mini percutaneous nephrolithotomy (SMP) in the treatment of single pediatric renal pelvis stones with CT value ≤ 800 HU,to provide reference for the diagnosis and treatment of children with such low-density stones. Methods: The clinical data of 74 children with single renal pelvis stones (1.0—2.5 cm in size,CT value ≤ 800 HU) treated in our hospital during Jan.2015 and Dec.2021 were retrospectively,with the subjects divided into mPCNL group (n=39) and SMP group (n=35) based on the surgical methods.The operation time,decrease in hemoglobin 2 hours after surgery,hospital stay,stone clearance rate,tubeless rate,and the incidence of complications (fever,mild renal pelvis injury) were compared between the two groups. Results: The operation time [(45.5±20.1) min vs. (59.8±13.6) min,P<0.001] and average hospital stay [(7.1±1.4) d vs.(11.1±2.6) d, P<0.001] were shorter in the SMP group than in the mPCNL group,while the tubeless rate (68.6% vs. 10.3%,P<0.001) was higher.There were no significant differences in the hemoglobin 2 hours after surgery and stone clearance rate at 1 month after surgery between the two groups (P>0.05).No blood transfusion was required in either group.Fever (≥38.5 ℃) occurred in 1 case and mild renal pelvis perforation occurred in 2 cases in the SMP group,while fever occurred in 2 cases and mild renal pelvis perforation occurred in 3 cases in the mPCNL group,with no significant difference between the two groups (8.6% vs.12.8%,P=0.556). Conclusion: The mPCNL and SMP have comparable efficacy in the treatment of single pediatric renal pelvis stones with CT value ≤800 HU,but SMP has advantages of shorter operation time,shorter average hospital stay,and higher tubeless rate.
9.Pharmacoeconomic evaluation of finerenone combined with standard regimen in the treatment of heart failure with preserved or mildly reduced ejection fraction
Runan XIA ; Xu WANG ; Huijuan CHEN ; Mengyu JIANG ; Panpan DI ; Mengmeng ZHAO ; Li LIU ; Hai LIANG
China Pharmacy 2025;36(14):1770-1774
OBJECTIVE To evaluate the cost-effectiveness of finerenone combined with standard of care (SoC) in the treatment of heart failure with mildly reduced ejection fraction (HFmrEF) or preserved ejection fraction (HFpEF). METHODS Based on a phase Ⅲ clinical trial, a Markov model was constructed from the perspective of China’s healthcare system to compare the treatment outcomes of finerenone combined with SoC regimen versus SoC regimen alone in the treatment of different cardiac functional statuses of HFmrEF/HFpEF. Using quality-adjusted life year (QALY) as the health output index, 3 times China’s per capita GDP in 2023 as the willingness-to-pay (WTP) threshold, a simulation was conducted with a 3-month cycle length and a 10- year time horizon, incorporating an annual discount rate of 5%. The dynamic changes across various stages of HFmrEF/HFpEF treated with finerenone combined with SoC versus SoC alone were simulated to evaluate the long-term effectiveness and costs of the two treatment strategies. Additionally, one-way sensitivity analysis and probabilistic sensitivity analysis were performed, to test the robustness of the results. RESULTS The incremental cost-effectiveness ratio (ICER) of the finerenone combined with SoC regimen versus SoC regimen alone was 179 504.75 yuan/QALY, which was below the WTP threshold set in this study, indicating that the finerenone combined with SoC regimen possessed certain economic advantages. The results of one-way sensitivity analysis showed that the utility value of NYHA Ⅱ status, the drug price of finerenone, the discount rate, and the probability of hospital transfer for both groups had a great influence on ICER, but did not affect the robustness of the model. The probabilistic sensitivity analysis also confirmed the robustness of the model. CONCLUSIONS Under the WTP threshold set in this study, finerenone combined with SoC is cost-effective in the treatment of HFmrEF/HFpEF, compared with the SoC regimen.
10.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome.

Result Analysis
Print
Save
E-mail