1.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
2.Application of reimplantation technique in treating Marfan syndrome and giant aortic root aneurysm during mid-pregnancy: A case report
NIU ; Hong QIAN ; Haibo SONG ; Lei DU ; Hai YU ; Eryong ZHANG ; Zhenghua XIAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):416-420
Pregnancy complicated by aortic root aneurysm in patients with Marfan syndrome is one of the main causes of termination of pregnancy or even death in pregnant women. A very small number of pregnant women require cardiac surgery to preserve pregnancy under extracorporeal circulation, and all surgeries use aortic root replacement. We reported a 30-year-old patient with severe aortic regurgitation combined with giant aortic root aneurysm and Marfan syndrome in mid-pregnancy. Valve-sparing root replacement using reimplantation technology was performed via a multidisciplinary cooperation model. This not only achieved the patient’s desire to continue pregnancy but also avoided the anticoagulation and bleeding complications brought by mechanical valve replacement, reduced pregnancy risks and improved long-term quality of life. Postoperative echocardiography showed a small amount of aortic valve regurgitation, aortic valve coaptation height of 0.6 cm, effective height of 1.1 cm, maximum aortic flow velocity of 1.4 m/s, mean transvalvular pressure gradient of 4.4 mm Hg, and satisfactory clinical results.
3.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome.
4. Network pharmacology-based study on mechanism of Zhi-Huang-Zhi-Tong powder in rheumatoid arthritis treatment
Xiao-Yun TIAN ; Ying-Jie YANG ; Wan-Ting ZHENG ; Ming-Qing HUANG ; Li-Hong NAN ; Jian-Yu CHEN ; Hai-Yu ZHAO
Chinese Pharmacological Bulletin 2024;40(2):381-389
Aim To discover the potential active compounds and possible mechanisms in rheumatoid arthritis (RA) treatment with Zhi-Huang-Zhi-Tong powder (ZHZTP) by using network pharmacology and in vitro study. Methods The active ingredient targets and disease targets of Zhihuang Zhitong Powder were searched and screened by database; they intersected to get a common target; and the "drug-component-target" relationship network diagram was constructed for GO and KEGG enrichment analysis of the overlapping genes; then the core components were docked with the core targets. Finally, based on the inflammation model of HUVECs in vitro, the efficacy and mechanism of Zhihuang Zhitong powder were verified by MTT method, plate scratch test and Western blot. Results Active compounds involved in RA treatment were screened in the present study, and the top two were ursolic acid and emodin, all playing crucial roles in RA treatment with ZHZTP. Additionally, the key target was AKTA, TNF and IL-6. GO and KEGG enrichment analysis revealed that ZHZTP regulated BP, MF and CC, and also focused on regulating AKTA, TNF and IL-6 signaling pathway. Molecular docking showed that interactions between key active compounds and key targets were stable. In vitro ZHZTP significantly inhibited cell viability and migration of TNF-a-stimulated HUVECs, and the involved mechanism may be associated with PI3K/AKT/m-TOR signaling. Conclusions The present study reveals that the potential active compounds of ZHZTP are ursolic acid and emodin, and moreover, the involved mechanisms of ZHZTP for RA treatment are associated with PI3 K/AKT/m-TOR signaling.
5. Retinal microstructure and developmental characteristics in Zebrafish
Li-Ping FENG ; Jun-Yong WANG ; Jin-Xing LIN ; Yi-Lin XU ; Xun CHEN ; Xiao-Ying WANG ; Yi-Lin XU ; Xun CHEN ; Xiao-Ying WANG ; Yi-Lin XU ; Xun CHEN ; Da-Hai LIU
Acta Anatomica Sinica 2024;55(1):105-112
Objective To study the microscopic structure and morphological characteristics of Zebrafish eyeball and retina at different developmental stages, and to lay a foundation for visual research model. Methods Select eight groups of zebrafish at different ages, with six fish in each group, 48 fish in total. Optical microscopy and transmission electron microscopy were used to observe the eyeball structure of Zebrafish at different developmental stages, and the thickness of retinal each layer was measured to analyze the temporal and spatial development pattern. The morphological characteristics of various cells in the retina and the way of nerve connection were observed from the microscopic and ultrastructural aspects, especially the structural differences between rod cells and cone cells. Results The retina of Zebrafish can be divided into ten layers including retinal pigment epithelial layer, rod cells and cone cells layer, outer limiting membrane, outer nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer, ganglion cell layer, nerve fiber layer, inner limiting membrane. Rod cells had a smaller nucleus and a higher electron density than cone cells. Photoreceptor terminals were neatly arranged in the outer plexiform layer, forming neural connections with horizontal cells and bipolar cells, and several synaptic ribbons are clearly visible within them. In Zebrafish retina, ganglion cell layer and inner plexiform layer are the earliest developed. With the growth and development of Zebrafish, the thickness of rod cells and cone cells layer and retinal pigment epithelial layer gradually increases, and the retinal structure was basically developed in about 10 weeks. Conclusion The retinal structure of Zebrafish is typical, with obvious stratification and highly differentiated nerve cells. There are abundant neural connections in the outer plexiform layer. The ocular development characteristics of Zebrafish are similar to those of most mammals.
6.Correlation Between the Prevalence of HHcy,Blood Lipids and Uric Acid in the Tibetan Population in Northwest Xizang
Ruoyu XIAO ; Yufei ZHANG ; Hai XIONG
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(2):324-330
ObjectivesTo understand the prevalence of hyperhomocysteinemia (HHcy) in the Tibetan population in Northwest Xizang, and its association with lipids and blood uric acid, and to explore the prevention and treatment strategies for chronic diseases such as HHcy in Northwest Xizang. MethodsIn this survey, questionnaires, physical examinations, and biochemical tests were conducted on 3432 Tibetan residents aged 18 years and older who had resided in Northwest Xizang (Ngari Prefecture, Nagqu City) for more than 6 months using a multistage stratified whole cluster random sampling method. ResultsThe prevalence of HHcy among Tibetan residents in Northwest Xizang was 75.7%, much higher than that of the average population in China (37.2%). Blood uric acid、high-density lipoprotein cholesterol and low-density lipoprotein cholesterol were risk factors for HHcy. ConclusionThe prevalence of HHcy is higher in the Tibetan population in northwest Xizang. Therefore, the local governments should urge people to establish a healthy lifestyle and enhance early intervention for HHcy by improving diet and lifestyle, thereby reducing the risk of cardiovascular, cerebrovascular and other related diseases.
7.Rapid Screening of 34 Emerging Contaminants in Surface Water by UHPLC-Q-TOF-MS
Chen-Shan LÜ ; Yi-Xuan CAO ; Xiao-Xi MU ; Hai-Yan CUI ; Tao WANG ; Zhi-Wen WEI ; Ke-Ming YUN ; Meng HU
Journal of Forensic Medicine 2024;40(1):30-36
Objective To establish a rapid screening method for 34 emerging contaminants in surface water by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS).Methods The pretreatment conditions of solid phase extraction(SPE)were op-timized by orthogonal experimental design and the surface water samples were concentrated and ex-tracted by Oasis? HLB and Oasis? MCX SPE columns in series.The extracts were separated by Kine-tex? EVO C18 column,with gradient elution of 0.1%formic acid aqueous solution and 0.1%formic acid methanol solution.Q-TOF-MS'fullscan'and'targeted MS/MS'modes were used to detect 34 emerging contaminants and to establish a database with 34 emerging contaminants precursor ion,prod-uct ion and retention times.Results The 34 emerging contaminants exhibited good linearity in the con-centration range respectively and the correlation coefficients(r)were higher than 0.97.The limit of de-tection was 0.2-10 ng/L and the recoveries were 81.2%-119.2%.The intra-day precision was 0.78%-18.70%.The method was applied to analyze multiple surface water samples and 6 emerging contaminants were detected,with a concentration range of 1.93-157.71 ng/L.Conclusion The method is simple and rapid for screening various emerging contaminants at the trace level in surface water.
8.Various arginine configurations-modified chitosan hydrogels promote skin wound repair
Jing DENG ; Tinghua LI ; Hai ZHU ; Xiao YANG ; Jun CAO ; Xiangdong ZHU
Chinese Journal of Tissue Engineering Research 2024;28(10):1497-1504
BACKGROUND:Clinical skin wound healing continues to be a significant concern,and tissue repair research has moved to the forefront with the development of biomaterials with immunomodulatory properties.Therefore,it is crucial to research wound dressings that have immunomodulatory properties. OBJECTIVE:To prepare chitosan hydrogels that have been modified by arginine with different configurations and assess their capacity to speed up wound healing in a rat animal model. METHODS:(1)In vitro trial:Chitosan modified by pure L-arginine,pure D-arginine,and L-arginine and D-arginine was synthesized by EDC/NHS system,which was then crosslinked with aldehyde-modified four-arm polyethylene glycol.Different chitosan-based hydrogels(CS-L,CS-D,and CS-DL)were finally formed via the Schiff base reaction.Three kinds of hydrogel extracts were co-cultured with fibroblasts respectively.Hydrogel cytocompatibility was assessed using the CCK-8 assay and live/dead staining.The effect of hydrogel on the migration capacity of fibroblasts was assessed by using a scratch test.Three kinds of hydrogels were incubated with rat erythrocyte suspension respectively to evaluate the hemocompatibility of the hydrogels.The hydrogel extract was co-cultured with RAW264.7 macrophages to test the hydrogels'capacity to enhance macrophage NO generation and polarize macrophage phenotype.(2)In vivo experiment:A total of 36 adult SD rats were divided into 4 groups with 9 rats in each group by the random number table method.Two full-layer skin defect wounds of 2 cm×2 cm were made on the back of each rat.Normal saline was added to the wounds of the control group,and corresponding hydrogel was added to the wounds of the CS-L,CS-D,and CS-DL groups,respectively,and then bandaged and fixed.The wound healing was observed regularly after operation.Hematoxylin-eosin staining was performed at 3,10,and 21 days after operation.The samples were collected 10 days after operation and M2 macrophage immunofluorescence staining was performed. RESULTS AND CONCLUSION:(1)In vitro experiments:Under scanning electron microscopy,the three kinds of hydrogels exhibited obvious interpenetrating network structures with pore sizes ranging from 70-200 μm.The three kinds of hydrogels have good swelling performance,degradation performance,self-healing performance,and suitable mechanical strength.The three kinds of hydrogels had good cytocompatibility and hemocompatibility and could promote the migration of fibroblasts.All three kinds of hydrogels had the ability to promote the polarization of macrophages,and CS-D hydrogels had the strongest ability to promote the polarization of macrophages.CS-L hydrogel could significantly promote the production of NO in macrophages.(2)In vivo experiment:3 and 10 days after operation,the wound healing rate in the CS-L and CS-D groups was higher than that in the control group(P<0.05).After 21 days,the wound healing rate of the three hydrogel groups was higher than that of the control group.Hematoxylin-eosin staining displayed that a large number of inflammatory cells were infiltrated in the wound tissue of rats in all groups,accompanied by neovessels and fibroblasts 3 days after operation.10 days after operation,there was still more inflammatory cell infiltration in the wound of the control group,and the inflammation of the other three groups was improved,especially the decrease of inflammatory cells in the CS-D group was more obvious.21 days after operation,the wound epithelium of each group was well repaired,and there was basically no inflammatory cell infiltration in the CS-L and CS-D groups,while there was still a small amount of inflammatory cell infiltration in the control group.Immunofluorescence staining revealed that the number of M2-type macrophages in the CS-D group was higher than that in the other three groups(P<0.05).(3)The results conclude that chitosan hydrogels modified by different configurations of arginine can promote wound healing through different mechanisms.
9.Biomechanical characteristics of thoracic T10 bone tumor metastasis at different locations:three-dimensional finite element analysis
Guoren XIA ; Hao YU ; Shifeng JIANG ; Xin PENG ; Xiao FU ; Qi CHEN ; Lizhuang YANG ; Tengfei WANG ; Hai LI
Chinese Journal of Tissue Engineering Research 2024;28(36):5759-5765
BACKGROUND:With the innovation of examination technique,the number of patients with spinal metastases in different stages is increasing year by year.Percutaneous vertebroplasty is an important treatment for spinal metastases;however,there is no report on the biomechanical effect in different stages and different activities after operation. OBJECTIVE:To simulate thoracic T10 bone stress and displacement of the different locations of the tumor metastasis based on the three-dimensional finite element model. METHODS:According to thoracic three-dimensional CT images of a 30-year-old healthy male,Mimics software was used to construct a three-dimensional geometric model of thoracic vertebrae(T9-T11),including ribs,ligaments and intervertebral discs.Three-dimensional models of T9-T11 vertebral bodies and different parts of the posterior thoracic vertebrae invaded by thoracic metastatic tumors were simulated,including the control group with intact vertebral structure,unilateral metastasis involving the vertebral body area(experimental group 1),unilateral metastasis involving the vertebral body and pedicle area(experimental group 2),unilateral metastasis involving the vertebral body,pedicle and transverse process area(experimental group 3),and bilateral metastasis involving the vertebral body,pedicle and transverse process area(experimental group 4).Abaqus software was used to create a three-dimensional finite element model.The von Mises stress distribution and the displacement of the model were analyzed under the loading condition,buckling condition,extension condition,and rotation condition. RESULTS AND CONCLUSION:(1)In the study of the maximum total displacement of loading points in different experimental groups under loading,flexion,extension,and rotation conditions,with the increase of metastatic tumor invasion site and invasion surface,the total displacement of loading points increased,and the overall stiffness decreased,especially the total displacement of loading points in experimental group 4 was the largest.(2)Under flexion condition,the maximum Von Mises stress value increased significantly after vertebral body and pedicle destruction,while the maximum Von Mises stress value was almost unchanged when the thoracocostal joint destruction was added.(3)On the basis of finite element analysis and simulation of bone tumor model,the elements in the bone cement region were set as a single set,and the bone cement region was set as the corresponding material properties to simulate bone cement filling.The results showed that the maximum total displacement under loading,flexion,extension,and rotation conditions was less than that of each experimental group.(4)The maximum stress values of the simulated percutaneous vertebroplasty patients in the loading,flexion,extension and rotation conditions were significantly lower than those of the femoral model.(5)It is concluded that the three-dimensional finite element model based on thoracic T9-T11 conducive to the biomechanics characteristics of thoracic vertebrae tumor metastasis,and on the basis of the thoracic vertebrae tumor metastasis model can accurately simulate load point after percutaneous vertebral body under different conditions of total displacement and the maximum Von Mises stress situation.
10.Research progress of role of mitochondrial dysfunction in diabetic cardiomyopathy
Chinese Journal of cardiovascular Rehabilitation Medicine 2024;33(1):94-97
Diabetic cardiomyopathy(DCM)is a complication of diabetes mellitus.It is characterized by abnormal myocardial cells leading to diastolic and systolic dysfunction,which can eventually lead to heart failure,impair the health of diabetic patients and worsen the poor prognosis.Studies indicated that mitochondrion directly participated in occurrence and development of DCM,involving glucose and lipid metabolic regulation,calcium homeostasis main-tenance,reactive oxygen species(ROS)level and oxidative stress etc.,whose normal functioning is necessary for human health.Mitochondrial dysfunction is closely associated with occurrence and development of DCM.The pres-ent article makes a review on mitochondrial structure and physiological function,dynamics and dysfunction,and role of mitochondrial dysfunction in DCM,and explore new targets for the prevention and treatment of DCM.

Result Analysis
Print
Save
E-mail