1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
		                        		
		                        			
		                        			Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens. 
		                        		
		                        		
		                        		
		                        	
2.Research Progress of Dual-Specificity Phosphatase in Diabetic Nephropathy
Xiaonian WANG ; Qi AO ; Hai HUANG ; Caihua LIE
Medical Journal of Peking Union Medical College Hospital 2025;16(3):730-738
Diabetic nephropathy(DN), a prevalent microvascular complication of diabetes, has emerged as a leading cause of end-stage renal disease worldwide. Recent studies on the dual-specific phosphatase (DUSP) family have revealed a significant reduction in DUSP expression levels in renal disease, suggesting that enhancing its expression may mitigate or alleviate the symptoms associated with renal disease. The primary function of DUSP is to mediate the dephosphorylation of mitogen-activated protein kinase (MAPK), which effectively inhibits the activation of the MAPK pathway, thus playing a crucial regulatory role in the onset and progression of DN. This article aims to investigate the correlation between DN and DUSP and to summarize the current research advancements concerning DUSP in the context of DN, providing new insights and essential theoretical foundations for its diagnosis and treatment.
3.Fangji Fuling Decoction Alleviates Sepsis by Blocking MAPK14/FOXO3A Signaling Pathway.
Yi WANG ; Ming-Qi CHEN ; Lin-Feng DAI ; Hai-Dong ZHANG ; Xing WANG
Chinese journal of integrative medicine 2024;30(3):230-242
		                        		
		                        			OBJECTIVE:
		                        			To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.
		                        		
		                        			METHODS:
		                        			A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.
		                        		
		                        			RESULTS:
		                        			FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).
		                        		
		                        			CONCLUSION
		                        			FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinase 14/metabolism*
		                        			;
		                        		
		                        			Wolfiporia
		                        			;
		                        		
		                        			Lipopolysaccharides/pharmacology*
		                        			;
		                        		
		                        			Sepsis/complications*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Inflammation/drug therapy*
		                        			;
		                        		
		                        			Oxygen Radioisotopes
		                        			
		                        		
		                        	
4.Exploration of potential active ingredients and mechanism of action of Xihuang pill-medicated serum against glioma based on HPLC-Q-TOF-MS/MS, network pharmacology and experimental verification
Jing PAN ; Qi-hai ZHANG ; Hao-wen FAN ; Xia WANG ; Wei-feng YAO ; Hong-bin XU
Acta Pharmaceutica Sinica 2024;59(3):693-703
		                        		
		                        			
		                        			 Qualitative analysis of the ingredients absorbed into blood and their metabolites of Xihuang pill (XHP) were conducted using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) technology. Network pharmacology was used to explore the potential anticancer mechanisms of the ingredients against glioma, and their specific mechanisms were validated through molecular docking and experimental verification. SD rats were intragastrically administered with XHP, and rat serum samples were collected. Ingredients absorbed into blood and their metabolites were identified based on the retention time of chromatographic peaks, accurate molecular mass, characteristic fragment ions, and comparisons with reference substances and literature data. PharmMapper and SwissTarget Prediction databases were used to obtain the targets of the XHP-medicated serum, while GeneCards, OMIM, PharmGKB, TTD, and DrugBank databases were used to obtain glioma disease targets. The "component-target" network relationship diagram was constructed using Cytoscape 3.9.1 software. The protein-protein interaction (PPI) network diagram was constructed using the STRING database, and the targets were analyzed using GO and KEGG analyses. Molecular docking was used to verify the binding ability of core targets with their corresponding compounds in XHP-medicated serum. The potential mechanism of the anti-glioma effect of 11-keto-
		                        		
		                        	
5.Application of artificial bone material in percutaneous vertebroplasty treatment for osteoporotic vertebral compression fractures
Feng JIN ; Pingping LIU ; Jinjun LI ; Qi FEI ; Hai MENG
International Journal of Surgery 2024;51(2):97-102
		                        		
		                        			
		                        			Objective:To explore the clinical efficacy of combined use of artificial bone materials in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCF).Methods:One hundred and eighty-four consecutive patients with OVCF admitted to Beijing Friendship Hospital, Capital Medical University from June 2020 to June 2021 were retrospectively analyzed. All patients had single-level fracture and treated with PVP. According to whether artificial bone materials were used, the patients were divided into experimental group ( n=95) and control group ( n=89). The experimental group was treated with bone cement mixed with artificial bone materials, and the control group was treated with bone cement. The following indices were observed in the two groups before surgery and at 3 days, 3 months, 12 months (final follow-up) after surgery: visual analogue scale (VAS) score, Oswestry disability index (ODI), Cobb angle of kyphosis, and the percentage of anterior vertebral height, the amount of bone cement injected, postoperative complications and adjacent vertebral fractures were recorded. Measurement data were expressed as mean±standard deviation ( ± s), and t-test was used for comparison between groups; Chi- test was used for comparison between groups for count data. Results:All patients successfully completed the operation and were followed up for 12-20 months, with a mean follow-up of (14.24±2.51) months. The VAS score at 3 days, 3 months after operation and final follow-up (experimental group: 2.00±0.71, 1.89±0.71, 1.41±0.49; control group: 2.13±0.73, 1.81±0.60, 1.44±0.50) and ODI index at 3 months after operation and the final follow-up [experimental group: (21.56±4.68)%, (23.22±4.11)%; control group: (22.46±3.74)%, (22.39±4.05)%] were significantly improved compared with those before operation [VAS, experimental group: 7.66±0.86, control group: 7.81±0.89; ODI, experimental group: (70.11±8.24)%, control group: (68.97±8.59)%], and the differences were statistically significant ( P<0.05). There were no significant differences in the amount of bone cement injected between the two groups ( P>0.05). There was no significant difference in the Cobb angle of kyphosis and the percentage of anterior vertebral height at each time point ( P>0.05). The incidence of bone cement leakage in the experimental group was 15.8% (15/95), slightly lower than that in the control group [22.5% (20/89)], but the difference was not statistically significant ( P>0.05). As of the final follow-up, the incidence of adjacent vertebral fracture in the experimental group was 8.4% (8/95), which was lower than that in the control group (19.1%, 17/89), and the difference was statistically significant ( P< 0.05). Conclusion:The application of bone cement mixed with artificial bone materials in PVP for OVCF, can achieve good clinical efficacy, and reduce the incidence of adjacent vertebral fractures.
		                        		
		                        		
		                        		
		                        	
6.Advantages of intraventrilular intracranial pressure monitoring with modified paine point puncture in decompression of severe traumatic brain injury
He-Ping TIAN ; Qi ZHONG ; Geng-Huan WANG ; Hai-Hang ZHOU
Medical Journal of Chinese People's Liberation Army 2024;49(2):182-187
		                        		
		                        			
		                        			Objective To explore the advantages of modified Paine point puncture for intraventricular intracranial pressure(ICP)monitoring probe implantation during decompressive craniectomy(DC)for severe traumatic brain injury.Methods The clinical data of 48 patients with severe traumatic brain injury admitted from April 2020 to April 2022 in Jiaxing Second Hospital were retrospectively collected.All patients underwent DC combined with ICP monitoring probe implantation.According to different ICP monitoring methods,they were divided into observation group(23 cases)and control group(25 cases).The observation group underwent the implantation of the intracerebroventricular ICP monitoring probe by puncture at the modified Paine point in the DC incision,while the control group underwent implantation of intracerebroventricular ICP monitoring probe by drilling of the skull through contralateral incision of DC at the Kocher point.The preoperative general data,operation time,postoperative mannitol dose and duration,ICP monitoring duration,postoperative rebleeding rate,intracranial infection rate and Glasgow outcome score(GOS)at 3 months after the operation were compared between the two groups.Results There was no statistical difference between the two groups in general data,mannitol dosage,mannitol duration and ICP monitoring duration(P>0.05).The operation time,postoperative rebleeding rate and intracranial infection rate in observation group were lower than those in control group(P<0.05).In the GOS score at 3 months after the operation,there was no statistical difference between the two groups(P>0.05).Conclusions Compared with the traditional implantation of intraventricular ICP monitoring probe through Kocher point through skull drilling with contralateral incision of DC,the implantation of intraventricular ICP monitoring probe through modified Paine point in the DC incision for severe traumatic brain injury can shorten the operation time and lower the postoperative rebleeding rate and intracranial infection rate.
		                        		
		                        		
		                        		
		                        	
7.Biomechanical characteristics of thoracic T10 bone tumor metastasis at different locations:three-dimensional finite element analysis
Guoren XIA ; Hao YU ; Shifeng JIANG ; Xin PENG ; Xiao FU ; Qi CHEN ; Lizhuang YANG ; Tengfei WANG ; Hai LI
Chinese Journal of Tissue Engineering Research 2024;28(36):5759-5765
		                        		
		                        			
		                        			BACKGROUND:With the innovation of examination technique,the number of patients with spinal metastases in different stages is increasing year by year.Percutaneous vertebroplasty is an important treatment for spinal metastases;however,there is no report on the biomechanical effect in different stages and different activities after operation. OBJECTIVE:To simulate thoracic T10 bone stress and displacement of the different locations of the tumor metastasis based on the three-dimensional finite element model. METHODS:According to thoracic three-dimensional CT images of a 30-year-old healthy male,Mimics software was used to construct a three-dimensional geometric model of thoracic vertebrae(T9-T11),including ribs,ligaments and intervertebral discs.Three-dimensional models of T9-T11 vertebral bodies and different parts of the posterior thoracic vertebrae invaded by thoracic metastatic tumors were simulated,including the control group with intact vertebral structure,unilateral metastasis involving the vertebral body area(experimental group 1),unilateral metastasis involving the vertebral body and pedicle area(experimental group 2),unilateral metastasis involving the vertebral body,pedicle and transverse process area(experimental group 3),and bilateral metastasis involving the vertebral body,pedicle and transverse process area(experimental group 4).Abaqus software was used to create a three-dimensional finite element model.The von Mises stress distribution and the displacement of the model were analyzed under the loading condition,buckling condition,extension condition,and rotation condition. RESULTS AND CONCLUSION:(1)In the study of the maximum total displacement of loading points in different experimental groups under loading,flexion,extension,and rotation conditions,with the increase of metastatic tumor invasion site and invasion surface,the total displacement of loading points increased,and the overall stiffness decreased,especially the total displacement of loading points in experimental group 4 was the largest.(2)Under flexion condition,the maximum Von Mises stress value increased significantly after vertebral body and pedicle destruction,while the maximum Von Mises stress value was almost unchanged when the thoracocostal joint destruction was added.(3)On the basis of finite element analysis and simulation of bone tumor model,the elements in the bone cement region were set as a single set,and the bone cement region was set as the corresponding material properties to simulate bone cement filling.The results showed that the maximum total displacement under loading,flexion,extension,and rotation conditions was less than that of each experimental group.(4)The maximum stress values of the simulated percutaneous vertebroplasty patients in the loading,flexion,extension and rotation conditions were significantly lower than those of the femoral model.(5)It is concluded that the three-dimensional finite element model based on thoracic T9-T11 conducive to the biomechanics characteristics of thoracic vertebrae tumor metastasis,and on the basis of the thoracic vertebrae tumor metastasis model can accurately simulate load point after percutaneous vertebral body under different conditions of total displacement and the maximum Von Mises stress situation.
		                        		
		                        		
		                        		
		                        	
8.The impact of different contrast agent concentrations on excimer laser ablation:an in vitro study
Pan HE ; Yang SHI ; Hai-Wei CHEN ; Jun-Jie YANG ; Jun GUO ; Yun-Dai CHEN ; Qi WANG
Chinese Journal of Interventional Cardiology 2024;32(1):39-44
		                        		
		                        			
		                        			Objective To explore the impact of contrast agent concentration on the excimer laser's effect on plaque ablation.Methods Using a laser catheter with a diameter of 0.9 mm,we conducted plaque model ablation experiments employing a 308-nanometer xenon chloride excimer laser.During the excimer laser ablation process,five groups were formed based on the injected contrast agent concentrations:a saline group,25%concentration group,50%concentration group,75%concentration group,and 100%concentration group.Optical coherence tomography was utilized to assess the changes in plaque lumen area after excimer laser ablation,evaluating the impact of contrast agent concentration on the excimer laser's ablation efficacy.Simultaneously,a water manometer was used to measure the shockwave pressure generated by the excimer laser in liquids with different contrast agent concentrations,aiming to explore the correlation between the shockwave pressure of the excimer laser and its ablative effect.Results The ablation areas in the 75%concentration group and the 100%concentration group were similar(P>0.05),both exceeding those in the 50%concentration contrast agent group,25%concentration group,and saline group(all P<0.001).Specifically,the ablation area in the 50%concentration group was significantly larger than that in the 25%concentration group and saline group(both P<0.001),while the 25%concentration group was larger than the saline group(P<0.001).The influence of contrast agent concentration on the shockwave pressure of the excimer laser exhibited a similar trend.Additionally,there was a significant positive correlation between the shockwave pressure generated by the excimer laser and its ablation area(r=0.9987,P<0.001).Conclusions The intensity of excimer laser ablation on plaque tissue can be modulated by altering the contrast agent concentration.These findings offer guidance for the application of excimer laser in conjunction with contrast agent injection techniques in the treatment of coronary artery disease.
		                        		
		                        		
		                        		
		                        	
9.Screening and identification of human monoclonal antibodies against low-calcium response V antigen of Yersinia pestis
Li ZHANG ; Bin-Yang ZHENG ; Qi ZHANG ; Hai-Lian WU ; Hong-Xin PAN ; Feng-Cai ZHU ; Hai-Sheng WU ; Jian-Fang ZHOU
Chinese Journal of Zoonoses 2024;40(1):15-20
		                        		
		                        			
		                        			To characterize human antibodies against low-calcium response V(LcrV)antigen of Yersinia pestis,the mono-clonal antibodies were screened and assayed.Antibody gene was derived from peripheral blood mononuclear cells of the vaccin-ees immunized by plague subunit vaccine in phase Ⅱb clinical trial.Human ScFv antibody library was constructed by phage dis-play.After panning library by using recombinant LcrV antigen,antibody variable genes were sequenced and converted into IgG1 format to evaluate its binding specificity and relevant parameters.An anti-plague human ScFv antibody library was estab-lished contained 7.54× 108 independent clones.After panning by LcrV antigen,3 human antibodies named as RV-B4,RV-D1 and RV-E8,respectively,were identified.Using indirect enzyme-linked immunosorbent assay(ELISA)and Western blot(WB),the specific bindings of the mAbs to LcrV antigen were confirmed.The dissociation constant(KD)of them to LcrV is 2.1 nmol/L,1.24 nmol/L and 42 nmol/L,respectively.Minor protective efficacy was found among 3 human antibodies in Y.pestis 141-infected mice.Three anti-LcrV monoclonal antibodies generated from immunized vaccinees were binding specific antibod-ies and could not block plague infection in mice.These antibodies are the potential candidate reagents for basic research of plague immunity and the application of plague diagnosis.
		                        		
		                        		
		                        		
		                        	
10.Application of the OmniLogTM microbial identification system in the detection of the host spectrum for wild-type plague phage in Qinghai Plateau
Cun-Xiang LI ; Zhi-Zhen QI ; Qing-Wen ZHANG ; Hai-Hong ZHAO ; Long MA ; Pei-Song YOU ; Jian-Guo YANG ; Hai-Sheng WU ; Jian-Ping FENG
Chinese Journal of Zoonoses 2024;40(1):21-25
		                        		
		                        			
		                        			The growth of three plague phages from Qinghai Plateau in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,PTB5,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were detected through a micromethod based on the OmniLogTM microbial identification system and by the drop method,to provide a scientific basis for future ecological studies and classification based on the host range.For plague vaccine strains EV76 and 614F,successful phage infection and subsequent phage growth were observed in the host bacte-rium.Diminished bacterial growth and respiration and a concomitant decrease in color were observed with the OmniLogTM mi-crobial identification system at 33 ℃ for 48 h.Yersinia pseudotuberculosis PTB5 was sensitive to Yersinia pestis phage 476,but Yersinia pseudotuberculosis PST5 was insensitive to phage 087 and 072204.Three strains of non-Yersinia pestis(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were insensitive to Yersinia pestis pha-ges 087,072204,and 476 showed similar growth curves.The growth of phages 476 and 087,as determined with the drop method,in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersin-ia enterocolitica 52302-2)showed the same results at 37 ℃,on the basis of comparisons with the OmniLogTM microbial i-dentification system;in contrast,phages 072204 did not show plaques on solid medium at 37 ℃ with plague vaccine strains EV76 and 614F.Determination based on the OmniLogTM detection system can be used as an alternative to the traditional determination of the host range,thus providing favorable application val-ue for determining the interaction between the phage and host bacteria.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail