1.Brain Aperiodic Dynamics
Zhi-Cai HU ; Zhen ZHANG ; Jiang WANG ; Gui-Ping LI ; Shan LIU ; Hai-Tao YU
Progress in Biochemistry and Biophysics 2025;52(1):99-118
Brain’s neural activities encompass both periodic rhythmic oscillations and aperiodic neural fluctuations. Rhythmic oscillations manifest as spectral peaks of neural signals, directly reflecting the synchronized activities of neural populations and closely tied to cognitive and behavioral states. In contrast, aperiodic fluctuations exhibit a power-law decaying spectral trend, revealing the multiscale dynamics of brain neural activity. In recent years, researchers have made notable progress in studying brain aperiodic dynamics. These studies demonstrate that aperiodic activity holds significant physiological relevance, correlating with various physiological states such as external stimuli, drug induction, sleep states, and aging. Aperiodic activity serves as a reflection of the brain’s sensory capacity, consciousness level, and cognitive ability. In clinical research, the aperiodic exponent has emerged as a significant potential biomarker, capable of reflecting the progression and trends of brain diseases while being intricately intertwined with the excitation-inhibition balance of neural system. The physiological mechanisms underlying aperiodic dynamics span multiple neural scales, with activities at the levels of individual neurons, neuronal ensembles, and neural networks collectively influencing the frequency, oscillatory patterns, and spatiotemporal characteristics of aperiodic signals. Aperiodic dynamics currently boasts broad application prospects. It not only provides a novel perspective for investigating brain neural dynamics but also holds immense potential as a neural marker in neuromodulation or brain-computer interface technologies. This paper summarizes methods for extracting characteristic parameters of aperiodic activity, analyzes its physiological relevance and potential as a biomarker in brain diseases, summarizes its physiological mechanisms, and based on these findings, elaborates on the research prospects of aperiodic dynamics.
2.Effects of long non-coding RNA KIAA0125 on proliferation and apoptosis of acute myeloid leukemia U937 cells
Huali HU ; Fahua DENG ; Yuancheng LIU ; Siqi WANG ; Jingxin ZHANG ; Tingting LU ; Hai HUANG ; Sixi WEI
Chinese Journal of Tissue Engineering Research 2025;29(19):3983-3991
BACKGROUND:U937 cells can be used as a cell model for studying the biological characteristics,signaling pathways,and therapeutic targets of acute myeloid leukemia.Although it has been reported that long non-coding RNA KIAA0125 is highly expressed in acute myeloid leukemia,its biological function in U937 cells remains unclear,and its mechanism of action in the occurrence and development of acute myeloid leukemia needs to be further clarified. OBJECTIVE:To investigate the expression level of long non-coding RNA KIAA0125 in peripheral blood of patients with acute myeloid leukemia and its effect on the proliferation and apoptosis of U937 cells. METHODS:RNA-sequencing was used to analyze the bone marrow monocyte samples from acute myeloid leukemia patients,and the differentially expressed gene long non-coding RNA KIAA0125 was screened.The expression of long non-coding RNA KIAA0125 in peripheral blood of patients with acute myeloid leukemia was detected by qRT-PCR.The relationship between long non-coding RNA KIAA0125 mRNA expression and prognosis in bone marrow cells of 173 acute myeloid leukemia patients and 70 healthy people was statistically analyzed by GEPIA database.Subsequently,recombinant lentivirus technology and CRISPR/Cas9-SAM technology were used to construct U937 cell lines with knockdown/overexpression of long non-coding RNA KIAA0125.qRT-PCR was used to detect the knockdown/overexpression efficiency of long non-coding RNA KIAA0125.Next,CCK-8 assay,flow cytometry,and western blot assay were used to detect the effects of knockdown/overexpression of long non-coding RNA KIAA0125 on the proliferation and apoptosis of U937 cells.Finally,western blot assay was used to detect the effect of knockdown/overexpressed long non-coding RNA KIAA0125 on Wnt/β-catenin signaling pathway-related proteins. RESULTS AND CONCLUSION:(1)The results of qRT-PCR showed that long non-coding RNA KIAA0125 was highly expressed in peripheral blood of acute myeloid leukemia patients.The results of GEPIA database showed that long non-coding RNA KIAA0125 was highly expressed in bone marrow cells of acute myeloid leukemia patients,and the high expression group had worse overall survival.(2)The knockdown efficiency of long non-coding RNA KIAA0125 in knockdown group was 70%,and the U937 cells that stably down-regulated long non-coding RNA KIAA0125 expression were successfully constructed.The expression of long non-coding RNA KIAA0125 in overexpression group was four times that of vector group,and stable U937 cells were successfully constructed.(3)Knockdown of long non-coding RNA KIAA0125 inhibited the proliferation of U937 cells and promoted their apoptosis.Overexpression of long non-coding RNA KIAA0125 promoted the proliferation of U937 cells but had no significant effect on the apoptosis of U937 cells.(4)Knockdown of long non-coding RNA KIAA0125 inhibited the activity of Wnt/β-catenin signaling pathway,while overexpression of long non-coding RNA KIAA0125 activated Wnt/β-catenin signaling pathway.These results confirm that long non-coding RNA KIAA0125 is highly expressed in acute myeloid leukemia peripheral blood.Long non-coding RNA KIAA0125 may affect the proliferation and apoptosis of U937 cells by regulating the Wnt/β-catenin signaling pathway,and may be a potential prognostic marker for acute myeloid leukemia.
3.Therapeutic effect of anti-PD-L1&CXCR4 bispecific nanobody combined with gemcitabine in synergy with PBMC on pancreatic cancer treatment
Hai HU ; Shu-yi XU ; Yue-jiang ZHENG ; Jian-wei ZHU ; Ming-yuan WU
Acta Pharmaceutica Sinica 2025;60(2):388-396
Pancreatic cancer is a kind of highly malignant tumor with a low survival rate and poor prognosis. The effectiveness of gemcitabine as a first-line chemotherapy drug is limited; however, it can activate dendritic cells and improve antigen presentation which increase the sensitivity of tumor cell to immunotherapy. Although immunotherapy has made some advancements in cancer treatment, the therapeutic benefit of programmed cell death receptor 1/programmed death receptor-ligand 1 (PD-1/PD-L1) blockade therapy remains relatively low. The chemokine C-X-C chemokine ligand 12 (CXCL12) contributes to an immunosuppressive tumor microenvironment by recruiting immunosuppressive cells. The receptor C-X-C motif chemokine receptor 4 (CXCR4), highly expressed in various tumors including pancreatic cancer, plays a crucial role in tumor development and progression. In this study, the anti-tumor immune response of human peripheral blood mononuclear cell (hPBMC) was enhanced using the combination of BsNb PX4 (anti-PD-L1&CXCR4 bispecific nanobody) and gemcitabine. In a co-culture system of gemcitabine-pretreated hPBMCs with tumor cells, the BsNb PX4 synergized gemcitabine to improve the cytotoxic activity of hPBMCs against tumor cells. Flow cytometry analysis confirmed increased ratio of CD8+ to CD4+ T cells in combination treatment. In NOD/SCID mice bearing pancreatic cancer, the combination treatment exhibited more infiltration of CD8+ T cells into tumor tissues, contributing to an effective anti-tumor response. This study presents potential new therapies for the treatment of pancreatic cancer. Ethical approval was obtained for collection of hPBMC samples from the Local Ethics Committee of Shanghai Jiao Tong University. All animal experiments were approved by the Animal Ethic Committee of Shanghai Jiao Tong University (authorizing number: A2024246).
4.Research and application progress on recognition components of surface plasmon resonance sensors in the pharmaceutical field
Xiaofei WANG ; Ying ZHANG ; Jiayu GU ; Xiner HU ; Hai ZHANG ; Yan CAO
Journal of Pharmaceutical Practice and Service 2025;43(5):205-212
Surface plasmon resonance (SPR) sensor is an optical detection technique enables real-time and dynamic monitoring of biological samples. SPR-based biosensors have remarkable characteristics such as label-free detection and high sensitivity, making them important tools for studying molecular interactions. The recognition element, which plays a critical role in SPR sensors,which could specifically identify and capture of target analytes, closely influencing the selectivity performance of the sensor. The progress on SPR sensors in pharmaceutical research were reviewed, which focused on the application of recognition elements such as antibodies, aptamers, molecularly imprinted polymers, and metal nanoparticles.
5.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
6.Predicting Survival in Patients with Neuroendocrine Prostate Cancer: A SEER-Based Comprehensive Study
Tianlong LUO ; Jintao HU ; Bisheng CHENG ; Peixian CHEN ; Jianhan FU ; Haitao ZHONG ; Jinli HAN ; Hai HUANG
The World Journal of Men's Health 2025;43(2):415-427
Purpose:
Neuroendocrine prostate cancer (NEPC) represents a particularly aggressive subtype of prostate cancer with a challenging prognosis. The purpose of this investigation is to craft and confirm the reliability of nomograms that can accurately forecast the 1-, 3-, and 5-year overall survival (OS) and cancer-specific survival (CSS) rates for individuals afflicted with NEPC.
Materials and Methods:
Data pertaining to patients diagnosed with NEPC within the timeframe of 2010 to 2020 was meticulously gathered and examined from the Surveillance, Epidemiology, and End Results Program (SEER). To predict OS and CSS, we devised and authenticated two distinct nomograms, utilizing predictive variables pinpointed through both univariate and multivariate Cox regression analyses.
Results:
The study encompassed 393 of NEPC patients, who were systematically divided into training and validation cohorts at a 2:1 ratio. Key prognostic factors were isolated, verified, and integrated into the respective nomograms for OS and CSS. The performance metrics, denoted by C-indices, stood at 0.730, 0.735 for the training set, and 0.784, 0.756 for the validation set. The precision and clinical relevance of the nomograms were further corroborated by the analysis of receiver operating characteristic curves, calibration plots, and decision curve analyses.
Conclusions
The constructed nomograms have demonstrated impressive efficacy in forecasting the 1-, 3-, and 5-year OS and rates for patients with NEPC. Implementing these predictive tools in clinical settings is anticipated to considerably enhance the care and treatment planning for individuals diagnosed with this aggressive form of prostate cancer, thus providing tailored and more precise prognostic assessments.
7.Predicting Survival in Patients with Neuroendocrine Prostate Cancer: A SEER-Based Comprehensive Study
Tianlong LUO ; Jintao HU ; Bisheng CHENG ; Peixian CHEN ; Jianhan FU ; Haitao ZHONG ; Jinli HAN ; Hai HUANG
The World Journal of Men's Health 2025;43(2):415-427
Purpose:
Neuroendocrine prostate cancer (NEPC) represents a particularly aggressive subtype of prostate cancer with a challenging prognosis. The purpose of this investigation is to craft and confirm the reliability of nomograms that can accurately forecast the 1-, 3-, and 5-year overall survival (OS) and cancer-specific survival (CSS) rates for individuals afflicted with NEPC.
Materials and Methods:
Data pertaining to patients diagnosed with NEPC within the timeframe of 2010 to 2020 was meticulously gathered and examined from the Surveillance, Epidemiology, and End Results Program (SEER). To predict OS and CSS, we devised and authenticated two distinct nomograms, utilizing predictive variables pinpointed through both univariate and multivariate Cox regression analyses.
Results:
The study encompassed 393 of NEPC patients, who were systematically divided into training and validation cohorts at a 2:1 ratio. Key prognostic factors were isolated, verified, and integrated into the respective nomograms for OS and CSS. The performance metrics, denoted by C-indices, stood at 0.730, 0.735 for the training set, and 0.784, 0.756 for the validation set. The precision and clinical relevance of the nomograms were further corroborated by the analysis of receiver operating characteristic curves, calibration plots, and decision curve analyses.
Conclusions
The constructed nomograms have demonstrated impressive efficacy in forecasting the 1-, 3-, and 5-year OS and rates for patients with NEPC. Implementing these predictive tools in clinical settings is anticipated to considerably enhance the care and treatment planning for individuals diagnosed with this aggressive form of prostate cancer, thus providing tailored and more precise prognostic assessments.
8.Predicting Survival in Patients with Neuroendocrine Prostate Cancer: A SEER-Based Comprehensive Study
Tianlong LUO ; Jintao HU ; Bisheng CHENG ; Peixian CHEN ; Jianhan FU ; Haitao ZHONG ; Jinli HAN ; Hai HUANG
The World Journal of Men's Health 2025;43(2):415-427
Purpose:
Neuroendocrine prostate cancer (NEPC) represents a particularly aggressive subtype of prostate cancer with a challenging prognosis. The purpose of this investigation is to craft and confirm the reliability of nomograms that can accurately forecast the 1-, 3-, and 5-year overall survival (OS) and cancer-specific survival (CSS) rates for individuals afflicted with NEPC.
Materials and Methods:
Data pertaining to patients diagnosed with NEPC within the timeframe of 2010 to 2020 was meticulously gathered and examined from the Surveillance, Epidemiology, and End Results Program (SEER). To predict OS and CSS, we devised and authenticated two distinct nomograms, utilizing predictive variables pinpointed through both univariate and multivariate Cox regression analyses.
Results:
The study encompassed 393 of NEPC patients, who were systematically divided into training and validation cohorts at a 2:1 ratio. Key prognostic factors were isolated, verified, and integrated into the respective nomograms for OS and CSS. The performance metrics, denoted by C-indices, stood at 0.730, 0.735 for the training set, and 0.784, 0.756 for the validation set. The precision and clinical relevance of the nomograms were further corroborated by the analysis of receiver operating characteristic curves, calibration plots, and decision curve analyses.
Conclusions
The constructed nomograms have demonstrated impressive efficacy in forecasting the 1-, 3-, and 5-year OS and rates for patients with NEPC. Implementing these predictive tools in clinical settings is anticipated to considerably enhance the care and treatment planning for individuals diagnosed with this aggressive form of prostate cancer, thus providing tailored and more precise prognostic assessments.
9.Predicting Survival in Patients with Neuroendocrine Prostate Cancer: A SEER-Based Comprehensive Study
Tianlong LUO ; Jintao HU ; Bisheng CHENG ; Peixian CHEN ; Jianhan FU ; Haitao ZHONG ; Jinli HAN ; Hai HUANG
The World Journal of Men's Health 2025;43(2):415-427
Purpose:
Neuroendocrine prostate cancer (NEPC) represents a particularly aggressive subtype of prostate cancer with a challenging prognosis. The purpose of this investigation is to craft and confirm the reliability of nomograms that can accurately forecast the 1-, 3-, and 5-year overall survival (OS) and cancer-specific survival (CSS) rates for individuals afflicted with NEPC.
Materials and Methods:
Data pertaining to patients diagnosed with NEPC within the timeframe of 2010 to 2020 was meticulously gathered and examined from the Surveillance, Epidemiology, and End Results Program (SEER). To predict OS and CSS, we devised and authenticated two distinct nomograms, utilizing predictive variables pinpointed through both univariate and multivariate Cox regression analyses.
Results:
The study encompassed 393 of NEPC patients, who were systematically divided into training and validation cohorts at a 2:1 ratio. Key prognostic factors were isolated, verified, and integrated into the respective nomograms for OS and CSS. The performance metrics, denoted by C-indices, stood at 0.730, 0.735 for the training set, and 0.784, 0.756 for the validation set. The precision and clinical relevance of the nomograms were further corroborated by the analysis of receiver operating characteristic curves, calibration plots, and decision curve analyses.
Conclusions
The constructed nomograms have demonstrated impressive efficacy in forecasting the 1-, 3-, and 5-year OS and rates for patients with NEPC. Implementing these predictive tools in clinical settings is anticipated to considerably enhance the care and treatment planning for individuals diagnosed with this aggressive form of prostate cancer, thus providing tailored and more precise prognostic assessments.
10.Predicting Survival in Patients with Neuroendocrine Prostate Cancer: A SEER-Based Comprehensive Study
Tianlong LUO ; Jintao HU ; Bisheng CHENG ; Peixian CHEN ; Jianhan FU ; Haitao ZHONG ; Jinli HAN ; Hai HUANG
The World Journal of Men's Health 2025;43(2):415-427
Purpose:
Neuroendocrine prostate cancer (NEPC) represents a particularly aggressive subtype of prostate cancer with a challenging prognosis. The purpose of this investigation is to craft and confirm the reliability of nomograms that can accurately forecast the 1-, 3-, and 5-year overall survival (OS) and cancer-specific survival (CSS) rates for individuals afflicted with NEPC.
Materials and Methods:
Data pertaining to patients diagnosed with NEPC within the timeframe of 2010 to 2020 was meticulously gathered and examined from the Surveillance, Epidemiology, and End Results Program (SEER). To predict OS and CSS, we devised and authenticated two distinct nomograms, utilizing predictive variables pinpointed through both univariate and multivariate Cox regression analyses.
Results:
The study encompassed 393 of NEPC patients, who were systematically divided into training and validation cohorts at a 2:1 ratio. Key prognostic factors were isolated, verified, and integrated into the respective nomograms for OS and CSS. The performance metrics, denoted by C-indices, stood at 0.730, 0.735 for the training set, and 0.784, 0.756 for the validation set. The precision and clinical relevance of the nomograms were further corroborated by the analysis of receiver operating characteristic curves, calibration plots, and decision curve analyses.
Conclusions
The constructed nomograms have demonstrated impressive efficacy in forecasting the 1-, 3-, and 5-year OS and rates for patients with NEPC. Implementing these predictive tools in clinical settings is anticipated to considerably enhance the care and treatment planning for individuals diagnosed with this aggressive form of prostate cancer, thus providing tailored and more precise prognostic assessments.

Result Analysis
Print
Save
E-mail