1.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
2.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
3.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
4.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
5.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
6.Challenges and prospects of early intervention of elderly urinary incontinence in the context of China's aging population
Journal of Modern Urology 2025;30(4):275-278
In the context of China's aging population, the issue of urinary incontinence among the elderly is becoming increasingly severe.Urinary incontinence not only significantly impacts patients' quality of life, but also imposes a substantial economic burden and psychological stress.This article explores the challenges and prospects of the early intervention of elderly urinary incontinence in China, including improving early diagnosis rates, enhancing patients' self-management abilities, and early screening and prevention for high-risk groups.With the advancement of technology and medical innovations, digital self-management tools offer new possibilities for managing urinary incontinence, helping patients to better control their condition, especially when medical resources are limited.Furthermore, this article calls for greater attention from all sectors of the society to address elderly urinary incontinence and promote the implementation of more systematic research and management strategies to improve the quality of life for China's elderly population.
7.The value of high-throughput sequencing data reanalysis in identifying ERBB2 amplification in colorectal cancer patients
Min-Na SHEN ; Li ZHANG ; Xin-Ning CHEN ; Fei HUANG ; Chao-Gang BAI ; Li-Meng CHEN ; Hai-Xiang PENG ; Yan ZHOU ; Bei-Li WANG ; Bai-Shen PAN ; Wei GUO
Fudan University Journal of Medical Sciences 2024;51(2):166-171
Objective To evaluate the value of high-throughput sequencing(HTS)data reanalysis that does not include ERBB2 copy number variation(CNV)analysis,in identifying ERBB2 amplification in patients with colorectal cancer.Methods The HTS data of 252 cases of colorectal cancer diagnosed by pathological biopsy who received peripheral blood cfDNA HTS detection samples were retrospectively analyzed.According to the HTS data of ERBB2 non-amplified samples judged by immunohistochemistry(IHC)and/or fluorescence in situ hybridization(FISH),the number of chromosome 17(Chr17)reads in the total number of reads was calculated the range of the ratio was initially determined as the threshold for prompting ERBB2 amplification.Suspected positive samples were screened according to thresholds and verified by digital PCR,IHC and FISH.Results The proportion of the number of Chr17 reads accounts for the number of total reads in the 89 cases of ERBB2 non-amplified samples determined by IHC and/or FISH ranged from 0.188 to 0.299(0.239±0.192).Using 0.298(1.25 times the mean)as the threshold indicating ERBB2 amplification,the data of 163 samples were analyzed,of which 7 cases were suspected to be positive,and the ratio ranged from 0.302 to 0.853.Among them,5 cases were determined to be positive by IHC and/or FISH,and 6 cases were confirmed to be positive by digital PCR.The ratio of the number of Chr17 reads to the number of total reads was positively correlated with the ratio of ERBB2/EIF2C1,and the correlation was good(r2=0.909).Conclusion The high-throughput sequencing data that does not cover the ERBB2 CNV analysis has a certain hint value for ERBB2 amplification in patients with colorectal cancer.
8.Research on Automatic Microalgae Detection System Based on Deep Learning
Rui-Jie XIANG ; Hao LIU ; Zhen LU ; Ze-Yu XIAO ; Hai-Peng LIU ; Yin-Chu WANG ; Xiao PENG ; Wei YAN
Progress in Biochemistry and Biophysics 2024;51(1):177-189
ObjectiveThe scale of microalgae farming industry is huge. During farming, it is easy for microalgae to be affected by miscellaneous bacteria and other contaminants. Because of that, periodic test is necessary to ensure the growth of microalgae. Present microscopy imaging and spectral analysis methods have higher requirements for experiment personnel, equipment and sites, for which it is unable to achieve real-time portable detection. For the purpose of real-time portable microalgae detection, a real-time microalgae detection system of low detection requirement and fast detection speed is needed. MethodsThis study has developed a microalgae detection system based on deep learning. A microscopy imaging device based on bright field was constructed. With imaged captured from the device, a neural network based on YOLOv3 was trained and deployed on microcomputer, thus realizing real-time portable microalgae detection. This study has also improved the feature extraction network by introducing cross-region residual connection and attention mechanism and replacing optimizer with Adam optimizer using multistage and multimethod strategy. ResultsWith cross-region residual connection, the mAP value reached 0.92. Compared with manual result, the detection error was 2.47%. ConclusionThe system could achieve real-time portable microalgae detection and provide relatively accurate detection result, so it can be applied to periodic test in microalgae farming.
9.Prognostic risk score model and bioinformatics analysis of antioxidant-associated lncRNAs in gastric cancer
Xiao-Xin ZHANG ; Zi-Peng XU ; Yan-Sheng LU ; Jie CHENG ; Zheng-Hai ZHU
Chinese Journal of Current Advances in General Surgery 2024;27(2):122-128
Objective:To investigate the value of antioxidant-associated long non-coding RNAs(lncRNAs)risk score model in prognosis and the association with immune microenvironment of the gastric cancer patients.Methods:Gastric cancer transcriptome data and clinical information were downloaded from TCGA database.Antioxidant-associated lncRNAs were obtained by co-ex-pression analysis of lncRNAs and antioxidant genes.Risk score was constructed using univariate cox regression analysis and lasso regression analysis.Log-Rank test was used to compare the survival differences between two groups.Receiver operating characteristic curve(ROC)was used to assess the specificity and sensitivity of the prognostic risk score model.Nomogram was constructed com-bining risk score and clinical parameters.Immune cell infiltration was assessed by TIMER 2.0.Im-munotherapy sensitivity of each sample was analyzed at TIDE website.Results:A risk score in-cluding 12 IncRNAs was constructed by univariate cox regression analysis and lasso regression anal-ysis.The risk score was an independent factor influencing patient prognosis[HR=5.406(3.131~9.335),P<0.001].Risk score was positively correlated with multiple suppressive immune cells infil-tration(M2 macrophage,tumor-associated fibroblast).Meanwhile,multiple aberrant expression of immune checkpoint genes and higher TIDE score were found in high-risk group,suggesting that high-risk groups may be more sensitive to immunotherapy.Conclusion:The antioxidant-associ-ated IncRNAs risk score is a good prognostic predictor and can act as a reference in individualized immunotherapy for gastric cancer patients.
10.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.

Result Analysis
Print
Save
E-mail