1.Emergency medical response strategy for the 2025 Dingri, Tibet Earthquake
Chenggong HU ; Xiaoyang DONG ; Hai HU ; Hui YAN ; Yaowen JIANG ; Qian HE ; Chang ZOU ; Si ZHANG ; Wei DONG ; Yan LIU ; Huanhuan ZHONG ; Ji DE ; Duoji MIMA ; Jin YANG ; Qiongda DAWA ; Lü ; JI ; La ZHA ; Qiongda JIBA ; Lunxu LIU ; Lei CHEN ; Dong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):421-426
This paper systematically summarizes the practical experience of the 2025 Dingri earthquake emergency medical rescue in Tibet. It analyzes the requirements for earthquake medical rescue under conditions of high-altitude hypoxia, low temperature, and low air pressure. The paper provides a detailed discussion on the strategic layout of earthquake medical rescue at the national level, local government level, and through social participation. It covers the construction of rescue organizational systems, technical systems, material support systems, and information systems. The importance of building rescue teams is emphasized. In high-altitude and cold conditions, rapid response, scientific decision-making, and multi-party collaboration are identified as key elements to enhance rescue efficiency. By optimizing rescue organizational structures, strengthening the development of new equipment, and promoting telemedicine technologies, the precision and effectiveness of medical rescue can be significantly improved, providing important references for future similar disaster rescues.
2.Correlation of MET Status with Clinicopathological Features and Prognosis of Advanced Prostatic Acinar Adenocarcinoma
Weiying HE ; Wenjia SUN ; Huiyu LI ; Yanggeling ZHANG ; De WU ; Chunxia AO ; Jincheng WANG ; Yanan YANG ; Xuexue XIAO ; Luyao ZHANG ; Xiyuan WANG ; Junqiu YUE
Cancer Research on Prevention and Treatment 2025;52(8):698-704
Objective To explore the correlation of MET status in patients with advanced prostatic acinar adenocarcinoma with the clinical pathological parameters and prognosis. Methods The specimen from 135 patients with advanced prostatic acinar adenocarcinoma was included. The expression of c-MET protein was detected via immunohistochemistry, and MET gene amplification was assessed by fluorescence in situ hybridization. The relationships of c-MET expression and gene amplification with clinicopathological features and prognosis were analyzed. Results The positive expression rate of c-MET was 52.60% (71/135). Compared with the c-MET expression in adjacent tissues, that in tumor tissues showed lower heterogeneous expression. Among the cases, 1.71% (2/117) exhibited MET gene polyploidy, but no gene amplification was detected. Positive c-MET expression was significantly correlated with high Gleason scores and grade groups (P=
3.Anti-COVID-19 mechanism of Anoectochilus roxburghii liquid based on network pharmacology and molecular docking
Jin ZHU ; Yan-bin WU ; De-fu HUANG ; Bing-ke BAI ; Xu-hui HE ; Dan JIA ; Cheng-jian ZHENG
Acta Pharmaceutica Sinica 2024;59(3):633-642
italic>Anoectochilus roxburghii liquid (spray, a hospital preparation of Wu Mengchao Hepatobiliary Hospital of Fujian Medical University) has shown a good clinical treatment effect during the COVID-19 pandemic, but its material basis and mechanism of action are still unclear. In this study, network pharmacology and molecular docking methods were used to predict the molecular mechanism of
4.Research and application of TTK and its inhibition in malignant tumors
Xuzhen ZHENG ; Weiquan WANG ; Zhiyu GONG ; De HE
International Journal of Surgery 2024;51(2):138-144
Monopolar spindle 1, also known as threonine and tyrosine kinase (TTK), is a key component of spindle assembly checkpoint (SAC). It is considered to be a monitoring mechanism to ensure mitotic fidelity and genomic stability. TTK is overexpressed in a variety of malignant tumors, and patients with low expression of TTK tend to have a longer survival time, suggesting that it may be used as a biomarker for diagnosis and prognosis. Abnormal expression of TTK often impairs the function of SAC, resulting in irregular mitosis, increased aneuploidy and mitotic disaster, thus promoting the occurrence of tumors. Current studies have shown that TTK inhibitors can inhibit the proliferation of tumor cells and increase the sensitivity of tumor cells to therapy in combination with chemotherapy or radiotherapy to achieve sensitization and attenuated effects. This article will review the research and application of TTK and its inhibitors in malignant tumors.
5.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
6.Research on three-dimensional ordered porous carbon-based materials prepared from Acanthopanax senticosus traditional Chinese medicine residues and their drug loading performance
De-sheng WANG ; Jia-xin FAN ; Ri-qing CHENG ; Shi-kui WU ; Lai-bing WANG ; Jia-hao SHI ; Ting-ting CHEN ; Qin-fang HE ; Chang-jin XU ; Hui-qing GUO
Acta Pharmaceutica Sinica 2024;59(10):2857-2863
Three-dimensional ordered porous carbon materials exhibit potential application prospects as excellent drug supports in drug delivery systems due to their high specific surface area, tunable pore structure, and excellent biocompatibility. In this study, three-dimensional ordered porous carbon materials were prepared using
7.Mechanism of Fucoidan Phlorofucofuroeckol A on Inhibit the Proliferation and Invasion of Colorectal Cancer Cells by Down-regulating TGF-β1/Smads Signaling Pathway
Hong LI ; Wei DONG ; Jie HOU ; De HE
Herald of Medicine 2024;43(4):495-501
Objective To investigate the effect of phlorofucofuroeckol A(PFFE-A)on the proliferation and invasion of colorectal carcinoma cells and its regulation of transforming growth factor-β1(TGF-β1)and mothers against decapentaplegic hom-olog 2/3(Smad2/3)signaling pathway.Methods The cells were processed as follows:the cells were intervened with low,medium and high doses of 50,100,and 150 μmol·L-1 of PFFE-A,respectively and cells in the normal control group were also established.5-Ethynyl-2'-deoxyuridine(EdU)staining was used to detect the cell proliferation.The transwell chamber was used to detect the invasion ability.A xenograft colon cancer nude mice model was used to detect the growth and metastasis ability of the cells in vivo.Real-time quantitative polymerase chain reaction(RT-qPCR)was used to detect the expression of epithelial-to-mes-enchymal transition(EMT)related genes.Western blotting was used to detect the expression levels of TGF-β1 and p-Smad2/3 in cells.Results Compared with normal control group,the proliferation rate,the number of invaded cells,the tumor mass,the pro-portion of tumor metastasis,the expression of N-cadherin mRNA,the expression of TGF-β1 and p-Smad2/3 were significantly de-creased(P<0.05),and the mRNA expression of E-cadherin was significantly increased(P<0.05).All were presented with a sig-nificant dose-dependent(P<0.05).Conclusion PFFE-A could inhibit the EMT process of tumor cells,inhibit the prolifera-tion and invasion of HT29 cells in vitro,and down-regulate the growth and metastasis of HT29 cells in vivo,which may be achieved by down-regulating TGF-β1/Smad2/3 signaling pathway.
8.Investigation on efficacy against hepatocellular carcinoma of novel antisense oligonucleotide targeting IGF1R mRNA encapsulated with neutral cytidinyl/cationic lipid in vitro
Yang PU ; Jing GUAN ; Qian-yi HE ; Yue-jie ZHU ; De-lin PAN ; Zhu GUAN ; Zhen-jun YANG
Acta Pharmaceutica Sinica 2024;59(5):1441-1448
Antisense oligonucleotides are a type of gene therapy that targets mRNA and inhibits gene expression. They have been applied in the treatment of various diseases, but there are still problems with poor enzyme stability and high dosage
9.Research progress on enteral nutrition in pediatric extracorporeal membrane oxygenation
De-Zhen YAO ; Li-Jie WANG ; Wen-He GUAN
Parenteral & Enteral Nutrition 2024;31(2):118-123
Extracorporeal membrane oxygenation (ECMO) has been increasingly applied in pediatric intensive care units, however, there is still no consensus on the optimal nutritional support for these children. Malnutrition is common in critically ill children receiving ECMO, and often leads to poor clinical outcomes. Therefore, nutritional support is an important component of ECMO treatment. This study was based on the latest guidelines on nutritional therapy for critically ill and ECMO children. We summarized the current clinical research on various aspects of nutritional therapy for ECMO children, and proposed suggestions and future research directions for the nutritional therapy in such children.
10.Classification Method for Petroleum Pollutants Based on Inception-One-Dimensional Convolutional Neural Network and Infrared Spectroscopy
De-Ming KONG ; Shao-Wei HE ; Xin-Yi LI ; Jun-Yu ZHAO ; Xiao-Dong NING
Chinese Journal of Analytical Chemistry 2024;52(9):1287-1297
Infrared spectroscopy technology has many advantages such as high efficiency and non-destructiveness,and has an important research and application value in the field of petroleum pollutant classification and detection.In this study,a petroleum pollutant classification method by combing the discrete wavelet transform(DWT)algorithm and a one-dimensional convolutional neural network based on the Inception module(Inception-1D-CNN)was proposed.Firstly,the DWT algorithm was used to denoise the original infrared spectral data to eliminate the interference information caused by experimental environment,instrument error and manual operation.Then,the inception-1D-CNN model was used to obtain multi-scale infrared spectroscopy feature information,and then classify the petroleum pollutants.Experimental results showed that compared with preprocessing methods such as standard normal variable(SNV),adaptive iteratively reweighted penalized least squares(AirPLS),and Savitzky-Golay smoothing(S-G),the prediction accuracy of the DWT algorithm combined with the 1D-CNN model with a convolutional kernel size of 3×1 was 86.6%,which was 6.6%,6.6%and 3.3%higher,respectively.The prediction accuracy of DWT algorithm combined with 1D-CNN model with a convolutional kernel size of 5×1 was 93.3%,which was 10.0%,7.0%and 3.3%higher,respectively.The prediction accuracy of the DWT algorithm combined with the 1D-CNN model with a convolutional kernel size of 7×1 was 90.0%,which was 6.7%,10.0%and 3.4%higher,respectively.The prediction accuracy of the DWT algorithm combined with the inception-1D-CNN model was 100.0%,which was 10.0%,10.0%and 3.4%higher,respectively.Therefore,the DWT algorithm combined with the inception-1D-CNN model could accurately classify and predict petroleum pollutants,and provided a certain basis for the subsequent treatment of oil spills on the sea surface.

Result Analysis
Print
Save
E-mail